Skip to main content

Advertisement

Log in

Kinetics of the hydrogen abstraction CHO + Alkane → HCHO + Alkyl reaction class: an application of the reaction class transition state theory

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The kinetics of the hydrogen abstraction at alkanes by formyl radicals is investigated using the reaction class transition state theory (RC-TST) approach combined with the linear energy relationship (LER) or the barrier height grouping (BHG). The rate constants of a reaction in this class can be estimated through those of the reference reaction, CHO + C2H6, which are obtained from rate constants of the reaction that involves the smallest species, namely CHO + CH4, using the explicit RC-TST scaling. The thermal rate constants of this smallest reaction are evaluated at the canonical variational transition state theory (CVT) with the corrections from the small-curvature tunneling (SCT) and hindered rotation (HR) treatments. Our analyses indicate that less than 40% systematic errors, on the average, exist in the predicted rate constants using both the LER approach, where only reaction energy is needed, and the BHG approach, where no additional information is needed; while comparing to explicit rate calculations the differences are less than 60%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Curran HJ, Gaffuri P, Pitz WJ and Westbrook CK (2002). Combust Flame 129: 253

    Article  CAS  Google Scholar 

  2. Zhang H-Y and McKinnon JT (1995). Combust Sci Tech 107: 261

    Article  CAS  Google Scholar 

  3. Richter H and Howard JB (2002). Phys Chem Chem Phys 4: 2038

    Article  CAS  Google Scholar 

  4. Richter H, Granata S, Green WH and Howard JB (2005). Proc Combust Inst 30: 1397

    Article  CAS  Google Scholar 

  5. Tsang W (1988). J Phys Chem Ref Data 17: 887

    CAS  Google Scholar 

  6. Tsang W and Hampson RF (1986). J Phys Chem Ref Data 15: 1087

    Article  CAS  Google Scholar 

  7. Tsang W (1990). J Phys Chem Ref Data 19: 1

    Article  CAS  Google Scholar 

  8. Zhang S and Truong TN (2003). J Phys Chem A 107: 1138

    Article  CAS  Google Scholar 

  9. Truong TN (2000). J Chem Phys 113: 4957

    Article  CAS  Google Scholar 

  10. Huynh LK, Ratkiewicz A and Truong TN (2006). J Phys Chem A 110: 473

    Article  CAS  Google Scholar 

  11. Kungwan N and Truong TN (2005). J Phys Chem A 109: 7742

    Article  CAS  Google Scholar 

  12. Truong TN, Duncan WT and Tirtowidjojo M (1999). Phys Chem Chem Phys 1: 1061

    Article  CAS  Google Scholar 

  13. Truong TN and Truong TTT (1999). Chem Phys Lett 314: 529

    Article  CAS  Google Scholar 

  14. Truong TN, Maity DK and Truong T-TT (2000). J Chem Phys 112: 24

    Article  CAS  Google Scholar 

  15. Polanyi JC (1972). Acc Chem Res 5: 161

    Article  CAS  Google Scholar 

  16. Evans MG and Polanyi M (1936). Trans Faraday Soc 32: 1333

    Article  CAS  Google Scholar 

  17. Evans MG and Polanyi M (1936). Proc R Soc 154: 133

    Google Scholar 

  18. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr. TV, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision A.1, Gaussian, Inc., Pittsburgh

  19. Becke AD (1993). J Chem Phys 98: 1372

    Article  CAS  Google Scholar 

  20. Lee C, Yang W and Parr RG (1988). Phys Rev 37: 785

    Article  CAS  Google Scholar 

  21. Truong TN (1994). J Chem Phys 100: 14

    Article  CAS  Google Scholar 

  22. Truong TN and Duncan W (1994). J Chem Phys 101: 7408

    Article  CAS  Google Scholar 

  23. Lynch BJ, Fast PL, Harris M and Truhlar DG (2000). J Phys Chem A 104: 4811

    Article  CAS  Google Scholar 

  24. Dunning TH (1989). J Chem Phys 94: 5523

    Google Scholar 

  25. Gonzalez C and Schlegel HB (1989). J Chem Phys 90: 2154

    Article  CAS  Google Scholar 

  26. Gonzalez C and Schlegel HB (1990). J Phys Chem 94: 5523

    Article  CAS  Google Scholar 

  27. Truhlar DG and Garrett BC (1980). Accs Chem Res 13: 440

    Article  CAS  Google Scholar 

  28. Truhlar DG, Isaacson AD and Garrett BC (1985). Generalized Transition State Theory. In: Baer, M (eds) Theory of chemical reaction dynamics, vol 4, pp 65. CRC Press, Boca Raton

    Google Scholar 

  29. Truhlar DG (1995). Direct dynamics method for the calculation of reaction rates. In: Heidrich, D (eds) The reaction path in chemistry: current approaches and perspectives, pp 229. Kluwer Academic, Dordrecht

    Google Scholar 

  30. Duncan WT, Bell RL and Truong TN (1998). J Comp Chem 19: 1039

    Article  CAS  Google Scholar 

  31. Pople JA, Head-Gordon M and Raghavachari K (1987). J Chem Phys 87: 5968

    Article  CAS  Google Scholar 

  32. Truong TN http://www.cseo.net

  33. Ayala PY and Schlegel HB (1998). J Chem Phys 108: 2314

    Article  CAS  Google Scholar 

  34. Ochterski JW, Petersson GA, Montgomery JA Jr (1996). J Chem Phys 104: 2598

    Article  CAS  Google Scholar 

  35. NIST Standard Reference Database Number 69, June 2005 Release, http://webbook.nist.gov/chemistry/

  36. Miller WH (1979). J Am Chem Soc 101: 6810

    Article  CAS  Google Scholar 

  37. DeMore WB, Sander SP, Golden DM, Hampson RF, Kurylo MJ, Howard CJ, Ravishankara AR, Kolb CE, Molina MJ (1992) in JPL publication (Jet Propulsion Laboratory, Pasadena), pp 90

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh N. Truong.

Additional information

Contribution to Mark S. Gordon 65th Birthday Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huynh, L.K., Truong, T.N. Kinetics of the hydrogen abstraction CHO + Alkane → HCHO + Alkyl reaction class: an application of the reaction class transition state theory. Theor Chem Account 120, 107–118 (2008). https://doi.org/10.1007/s00214-007-0311-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-007-0311-9

Keywords

Navigation