The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals

An Erratum to this article was published on 15 January 2008

Abstract

We present two new hybrid meta exchange- correlation functionals, called M06 and M06-2X. The M06 functional is parametrized including both transition metals and nonmetals, whereas the M06-2X functional is a high-nonlocality functional with double the amount of nonlocal exchange (2X), and it is parametrized only for nonmetals.The functionals, along with the previously published M06-L local functional and the M06-HF full-Hartree–Fock functionals, constitute the M06 suite of complementary functionals. We assess these four functionals by comparing their performance to that of 12 other functionals and Hartree–Fock theory for 403 energetic data in 29 diverse databases, including ten databases for thermochemistry, four databases for kinetics, eight databases for noncovalent interactions, three databases for transition metal bonding, one database for metal atom excitation energies, and three databases for molecular excitation energies. We also illustrate the performance of these 17 methods for three databases containing 40 bond lengths and for databases containing 38 vibrational frequencies and 15 vibrational zero point energies. We recommend the M06-2X functional for applications involving main-group thermochemistry, kinetics, noncovalent interactions, and electronic excitation energies to valence and Rydberg states. We recommend the M06 functional for application in organometallic and inorganometallic chemistry and for noncovalent interactions.

References

  1. 1.

    Boese AD and Handy NC (2002). J Chem Phys 116: 9559

    CAS  Google Scholar 

  2. 2.

    Tao J, Perdew JP, Staroverov VN and Scuseria GE (2003). Phys Rev Lett 91: 146401

    Google Scholar 

  3. 3.

    Staroverov VN, Scuseria GE, Tao J and Perdew JP (2003). J Chem Phys 119: 12129

    CAS  Google Scholar 

  4. 4.

    Zhao Y, Lynch BJ and Truhlar DG (2004). J Phys Chem A 108: 2715

    CAS  Google Scholar 

  5. 5.

    Boese AD and Martin JML (2004). J Chem Phys 121: 3405

    CAS  Google Scholar 

  6. 6.

    Zhao Y and Truhlar DG (2004). J Phys Chem A 108: 6908

    CAS  Google Scholar 

  7. 7.

    Xu X and Goddard WA (2004). Proc Natl Acad Sci USA 101: 2673

    CAS  Google Scholar 

  8. 8.

    Zhao Y, Lynch BJ and Truhlar DG (2005). Phys Chem Chem Phys 7: 43

    CAS  Google Scholar 

  9. 9.

    Perdew JP, Ruzsinszky A, Tao J, Staroverov VN, Scuseria GE and Csonka GI (2005). J Chem Phys 123: 62201

    Google Scholar 

  10. 10.

    Zhao Y and Truhlar DG (2005). J Phys Chem A 109: 5656

    CAS  Google Scholar 

  11. 11.

    Keal TW and Tozer DJ (2005). J Chem Phys 123: 121103

    Google Scholar 

  12. 12.

    Zhao Y, Schultz NE and Truhlar DG (2005). J Chem Phys 123: 161103

    Google Scholar 

  13. 13.

    Becke AD (2005). J Chem Phys 122: 64101

    Google Scholar 

  14. 14.

    Zhao Y, Schultz NE and Truhlar DG (2006). J Chem Theory Comput 2: 364

    Google Scholar 

  15. 15.

    Mori-Sanchez P, Cohen AJ and Yang W (2006). J Chem Phys 124: 91102

    Google Scholar 

  16. 16.

    Zhao Y and Truhlar DG (2006). J Chem Phys 125: 194101

    Google Scholar 

  17. 17.

    Grimme S (2006). J Chem Phys 124: 034108

    Google Scholar 

  18. 18.

    Grimme S (2006). J Comp Chem 27: 1787

    CAS  Google Scholar 

  19. 19.

    Zhao Y and Truhlar DG (2006). J Phys Chem A 110: 13126

    CAS  Google Scholar 

  20. 20.

    Scuseria GE, Staroverov VN (2005). In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and application of computational chemistry: the first 40 years. Elsevier, Amsterdam, pp 669–724

  21. 21.

    Voorhis TV and Scuseria GE (1998). J Chem Phys 109: 400

    Google Scholar 

  22. 22.

    Becke AD (1998). J Chem Phys 109: 2092

    CAS  Google Scholar 

  23. 23.

    Baerends EJ, Ellis DE and Ros P (1973). Chem Phys 2: 41

    CAS  Google Scholar 

  24. 24.

    Dunlap BI, Connolly JWD and Sabin JR (1979). J Chem Phys 71: 3396

    CAS  Google Scholar 

  25. 25.

    Vahtras O, Almlöf J and Feyereisen MW (1993). Chem Phys Lett 213: 514

    CAS  Google Scholar 

  26. 26.

    Kendall RA, Apra E, Bernholdt DE, Bylaska EJ, Dupuis M, Fann GI, Harrison RJ, Ju J, Nichols JA, Nieplocha J, Straatsma TP, Windus TL and Wong AT (2000). Comput Phys Commun 128: 260

    CAS  Google Scholar 

  27. 27.

    Te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, Van Gisbergen SJA, Snijders JG and Ziegler T (2001). J Comp Chem 22: 931

    CAS  Google Scholar 

  28. 28.

    VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T and Hutter J (2005). Comput Phys Commun 167: 103

    CAS  Google Scholar 

  29. 29.

    Jung Y, Sodt A, Gill PMW and Head-Gordon M (2005). Proc Natl Acad Sci USA 102: 6692

    CAS  Google Scholar 

  30. 30.

    Eichkorn K, Treutler O, Oehm H, Haeser M and Ahlrichs R (1995). Chem Phys Lett 240: 283

    CAS  Google Scholar 

  31. 31.

    Eichkorn K, Weigend F, Treutler O and Ahlrichs R (1997). Theo Chem Acc 97: 119

    CAS  Google Scholar 

  32. 32.

    Füsti-Molnár L and Pulay P (2003). Theochem 25: 666–667

    Google Scholar 

  33. 33.

    Skylaris C-K, Haynes PD, Mostofi AA and Payne MC (2006). Phys Status Solidi B, Basic Res 243: 973

    CAS  Google Scholar 

  34. 34.

    Dreuw A and Head-Gordon M (2006). Chem Rev 105: 4009

    Google Scholar 

  35. 35.

    Zhao Y and Truhlar DG (2006). Org Lett 8: 5753

    CAS  Google Scholar 

  36. 36.

    Lynch BJ, Fast PL, Harris M and Truhlar DG (2000). J Phys Chem A 104: 4811

    CAS  Google Scholar 

  37. 37.

    Zhao Y and Truhlar DG (2005). J Chem Theory Comput 1: 415

    CAS  Google Scholar 

  38. 38.

    Schultz N, Zhao Y and Truhlar DG (2005). J Phys Chem A 109: 4388

    CAS  Google Scholar 

  39. 39.

    Schultz N, Zhao Y and Truhlar DG (2005). J Phys Chem A 109: 11127

    CAS  Google Scholar 

  40. 40.

    Zhao Y and Truhlar DG (2006). J Phys Chem A 110: 10478

    CAS  Google Scholar 

  41. 41.

    Zhao Y and Truhlar DG (2006). J Chem Theory Comput 2: 1009

    CAS  Google Scholar 

  42. 42.

    Zhao Y and Truhlar DG (2006). J Phys Chem A 110: 5121

    CAS  Google Scholar 

  43. 43.

    Zhao Y and Truhlar DG (2006). J Chem Phys 124: 224105

    Google Scholar 

  44. 44.

    Zhao Y and Truhlar DG (2007). J Chem Theory Comput 3: 289

    CAS  Google Scholar 

  45. 45.

    Zhang Y, Li ZH and Truhlar DG (2007). J Chem Theory Comput 3: 593

    CAS  Google Scholar 

  46. 46.

    Kabelác M, Sherer EC, Cramer CJ and Hobza P (2006). Chem Eur J 13: 2067

    Google Scholar 

  47. 47.

    Schultz NE, Gherman BF, Cramer CJ and Truhlar DG (2006). J Phys Chem B 110: 24030

    CAS  Google Scholar 

  48. 48.

    Zhao Y and Truhlar DG (2007). J Org Chem 72: 295

    CAS  Google Scholar 

  49. 49.

    Zhao Y, Lynch BJ and Truhlar DG (2004). J Phys Chem A 108: 4786

    CAS  Google Scholar 

  50. 50.

    Zhao Y, González-García N and Truhlar DG (2005). J Phys Chem A 109: 2012

    CAS  Google Scholar 

  51. 51.

    Chakravorty SJ, Gwaltney SR, Davidson ER, Parpia FA and Fischer CFF (1993). Phys Rev A 47: 3649

    CAS  Google Scholar 

  52. 52.

    Lynch BJ, Zhao Y and Truhlar DG (2003). J Phys Chem A 107: 1384

    CAS  Google Scholar 

  53. 53.

    Zheng JJ, Zhao Y and Truhlar DG (2007). J Chem Theory Comput 3: 569

    CAS  Google Scholar 

  54. 54.

    Pople JA, Head-Gordon M and Raghavachari K (1987). J Chem Phys 87: 5968

    CAS  Google Scholar 

  55. 55.

    Fast PL, Sanchez ML and Truhlar DG (1999). Chem Phys Lett 306: 407

    CAS  Google Scholar 

  56. 56.

    Curtiss LA, Redfern PC, Raghavachari K, Rassolov V and Pople JA (1999). J Chem Phys 110: 4703

    CAS  Google Scholar 

  57. 57.

    Curtiss LA, Raghavachari K, Redfern PC, Rassolov V and Pople JA (1998). J Chem Phys 109: 7764

    CAS  Google Scholar 

  58. 58.

    Frisch MJ, Pople JA and Binkley JS (1984). J Chem Phys 80: 3265

    CAS  Google Scholar 

  59. 59.

    Hehre WJ, Radom L, Schleyer PvR and Pople JA (1986). Ab initio molecular orbital theory, 1st ed.   , Wiley, New York

    Google Scholar 

  60. 60.

    Izgorodina EI, Coote ML and Radom L (2005). J Phys Chem A 109: 7558

    CAS  Google Scholar 

  61. 61.

    Weigend F, Furche F and Ahlrichs R (2003). J Chem Phys 119: 12753

    CAS  Google Scholar 

  62. 62.

    Fast PL and Truhlar DG (2000). J Phys Chem A 104: 6111

    CAS  Google Scholar 

  63. 63.

    Lynch BJ and Truhlar DG (2003). J Phys Chem A 107: 3898

    CAS  Google Scholar 

  64. 64.

    Sinnokrot MO and Sherrill CD (2004). J Phys Chem A 108: 10200

    CAS  Google Scholar 

  65. 65.

    Jurecka P, Sponer J, Cerny J and Hobza P (2006). Phys Chem Chem Phys 8: 1985

    CAS  Google Scholar 

  66. 66.

    Runge E and Gross EKU (1984). Phys Rev Lett 52: 997

    CAS  Google Scholar 

  67. 67.

    Casida ME (1996) . In: Seminario JM(ed) Recent developments and applications of modern density functional theory. Elsevier, Amsterdam, p 391

  68. 68.

    Bauernschmitt R and Ahlrichs R (1996). Chem Phys Lett 256: 454

    CAS  Google Scholar 

  69. 69.

    Stratmann RE, Scuseria GE and Frisch MJ (1998). J Chem Phys 109: 8218

    CAS  Google Scholar 

  70. 70.

    Marques MAL and Gross EKU (2004). Annu Rev Phys Chem 55: 427

    CAS  Google Scholar 

  71. 71.

    Furche F and Rappoport D (2005). Comp Theor Chem 16: 93

    CAS  Article  Google Scholar 

  72. 72.

    Sadlej AJ (1991). Theor Chim Acta 79: 123

    CAS  Google Scholar 

  73. 73.

    Casida ME, Jamorski C, Casida KC and Salahub DR (1998). J Chem Phys 108: 4439

    CAS  Google Scholar 

  74. 74.

    Hamprecht FA, Cohen AJ, Tozer DJ and Handy NC (1998). J Chem Phys 109: 6264

    CAS  Google Scholar 

  75. 75.

    NIST Computational Chemistry Comparison and Benchmark DataBase, http://srdata.nist.gov/cccbdb/

  76. 76.

    Furche F and Perdew JP (2006). J Chem Phys 124: 044103

    Google Scholar 

  77. 77.

    Woon DE and T.H. Dunning J (1993). J Chem Phys 98: 1358

    CAS  Google Scholar 

  78. 78.

    Balabanov NB and Peterson KA (2005). J Chem Phys 123: 064107

    Google Scholar 

  79. 79.

    Quintal MM, Karton A, Iron MA, Boese AD and Martin JML (2006). J Phys Chem A 110: 709

    CAS  Google Scholar 

  80. 80.

    Truhlar DG, Lynch BJ, Zhao Y, http://comp.chem.umn.edu/ basissets/basis.cgi

  81. 81.

    Raghavachari K and Trucks GW (1989). J Chem Phys 91: 1062

    Google Scholar 

  82. 82.

    Martin RL and Hay PJ (1981). J Chem Phys 75: 4539

    CAS  Google Scholar 

  83. 83.

    Boys SF and Bernardi F (1970). Mol Phys 19: 553

    CAS  Google Scholar 

  84. 84.

    Schwenke DW and Truhlar DG (1985). J Chem Phys 82: 2418

    CAS  Google Scholar 

  85. 85.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr., Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski G, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. (2003) . Gaussian Inc., Pittsburgh

  86. 86.

    Voorhis TV and Scuseria GE (1997). Mol Phys 92: 601

    Google Scholar 

  87. 87.

    Perdew JP, Burke K and Ernzerhof M (1996). Phys Rev Lett 77: 3865

    CAS  Google Scholar 

  88. 88.

    Becke AD (1986). J Chem Phys 84: 4524

    CAS  Google Scholar 

  89. 89.

    Kohn W and Sham LJ (1965). Phys Rev 140: 1133

    Google Scholar 

  90. 90.

    Stoll H, Pavkidou CME and Preuss H (1978). Theor Chim Acta 49: 143

    CAS  Google Scholar 

  91. 91.

    Becke AD (1988). Phys Rev A 38: 3098

    CAS  Google Scholar 

  92. 92.

    Lee C, Yang W and Parr RG (1988). Phys Rev B 37: 785

    CAS  Google Scholar 

  93. 93.

    Becke AD (1993). J Chem Phys 98: 5648

    CAS  Google Scholar 

  94. 94.

    Stephens PJ, Devlin FJ, Chabalowski CF and Frisch MJ (1994).    J Phys Chem 98: 11623

    CAS  Google Scholar 

  95. 95.

    Schmider HL and Becke AD (1998). J Chem Phys 108: 9624

    CAS  Google Scholar 

  96. 96.

    Adamo C and Barone V (1999). J Chem Phys 110: 6158

    CAS  Google Scholar 

  97. 97.

    Valentin CD, Pacchioni G, Bredow T, Dominguez-Ariza D and Illas F (2002). J Chem Phys 117: 2299

    Google Scholar 

  98. 98.

    Wilson PJ, Bradley TJ and Tozer DJ (2001). J Chem Phys 115: 9233

    CAS  Google Scholar 

  99. 99.

    Curtiss LA, Redfern PC and Raghavachari K (2005). J Chem Phys 123: 124107

    Google Scholar 

  100. 100.

    Perdew JP, Schmidt K (2001) In: Van-Doren V, Alsenoy CV, Geerlings P (eds) Density functional theory and its applications to materials. American Institute of Physics, New York, p 1

  101. 101.

    Zhao Y, Pu J, Lynch BJ and Truhlar DG (2004). Phys Chem Chem Phys 6: 673

    CAS  Google Scholar 

  102. 102.

    Woodcock HL, Schaefer HF and Schreiner PR (2002). J Phys Chem A 106: 11923

    CAS  Google Scholar 

  103. 103.

    Champagne B, Perpete EA, van Gisbergen SJA, Baerends E-J, Snijders JG, Soubra-Ghaoui C, Robins KA and Kirtman B (1998).   J Chem Phys 109: 10489

    CAS  Google Scholar 

  104. 104.

    Champagne B, Perpete EA, Jacquemin D, Gisbergen SJAV, Baerends E-J, Soubra-Ghaoui C, Robins KA and Kirtman B (2000).   J Phys Chem A 104: 4755

    CAS  Google Scholar 

  105. 105.

    Schreiner PR, Fokin AA, Pascal RA Jr and de Meijere A (2006). Org Lett 8: 3635

    CAS  Google Scholar 

  106. 106.

    Grimme S (2006). Angew Chem Int Ed 45: 4460

    CAS  Google Scholar 

  107. 107.

    Phillips JA and Cramer CJ (2005). J Chem Theory Comput 1: 827

    CAS  Google Scholar 

  108. 108.

    Füsti-Molnár L and Szalay PG (1996). J Phys Chem 100: 6288

    Google Scholar 

  109. 109.

    Leininger ML and Schaefer HF (1997). J Chem Phys 107: 9059

    CAS  Google Scholar 

  110. 110.

    Ljubic I and Sabljic A (2002). J Phys Chem A 106: 4745

    CAS  Google Scholar 

  111. 111.

    Feller D and Peterson KA (1999). J Chem Phys 110: 8384

    CAS  Google Scholar 

  112. 112.

    Curtiss LA, Raghavachari K, Redfern PC and Pople JA (2000).   J Chem Phys 112: 7374

    CAS  Google Scholar 

  113. 113.

    Grimme S (2005). J Phys Chem A 109: 3067

    CAS  Google Scholar 

  114. 114.

    Cioslowski J, Schimeczek M, Liu G and Stoyanov V (2000). J Chem Phys 113: 9377

    CAS  Google Scholar 

  115. 115.

    Ruiz E, Salahub DR and Vela A (1995). J Am Chem Soc 117: 1141

    CAS  Google Scholar 

  116. 116.

    Ruiz E, Salahub DR and Vela A (1996). J Phys Chem 100: 12265

    CAS  Google Scholar 

  117. 117.

    Kool ET, Morales JC and Guckian KM (2000). Angew Chem Int Ed 39: 990

    CAS  Google Scholar 

  118. 118.

    Barthelemy P, Lee SJ and Grinstaff M (2005). Pure Appl Chem 77: 2133

    CAS  Google Scholar 

  119. 119.

    Vondrásek J, Bendová L, Klusák V and Hobza P (2005). J Am Chem Soc 127: 2615

    Google Scholar 

  120. 120.

    Mansikkamaeki H, Nissinen M and Rissanen K (2004). Angew Chem Int Ed 43: 1243

    CAS  Google Scholar 

  121. 121.

    Vázquez M, Bermejo MR, Licchelli M, González-Noya AM, Pedrido RM, Sangregorio C, Sorace L, García-Deibe AM and Sanmartín J (2005). Eur J Inorg Chem 17: 3479

    Google Scholar 

  122. 122.

    Hobza P and Sponer J (1999). Chem Rev 99: 3247

    CAS  Google Scholar 

  123. 123.

    Sponer J, Leszczynski J and Hobza P (2001). Biopolymers 61: 3

    CAS  Google Scholar 

  124. 124.

    Birks JB (1970). Photophysics of aromatic molecules. Wiley, New York, p 71

    Google Scholar 

  125. 125.

    Tawada Y, Tsuneda T, Yanagisawa S, Yanai T and Hirao K (2004).    J Chem Phys 120: 8425

    CAS  Google Scholar 

  126. 126.

    Ben-Shlomo SB and Kaldor U (1990). J Chem Phys 92: 3680

    CAS  Google Scholar 

  127. 127.

    Nielsen ES, Jorgensen P and Oddershede J (1980). J Chem Phys 73: 6238

    CAS  Google Scholar 

  128. 128.

    Clouthier DJ and Ramsay DA (1983). Annu Rev Phys Chem 34: 31

    CAS  Google Scholar 

  129. 129.

    Biermann D and Schmidt W (1980). J Am Chem Soc 102: 3163

    CAS  Google Scholar 

  130. 130.

    Grimme S and Parac M (2003). Chem Phys Chem 4: 292

    CAS  Google Scholar 

  131. 131.

    Hautman J and Klein ML (1991). NATO ASI Ser E 205: 395

    CAS  Google Scholar 

  132. 132.

    Karlin KD (1993). Science 261: 701

    CAS  Google Scholar 

  133. 133.

    Crabtree RH (1994). The organometallic chemistry of the transition metals, 2nd ed. Wiley, New York

    Google Scholar 

  134. 134.

    George SM (1995). Chem Rev 95: 475

    CAS  Google Scholar 

  135. 135.

    Somorjai GA (1995). Chem Rev 96: 1223

    Google Scholar 

  136. 136.

    Ratner MA, Davis B, Kemp M, Mujica V, Roitberg A and Yalirakil S (1998). Ann N Y Acad Sci 852: 22

    CAS  Google Scholar 

  137. 137.

    Truhlar DG, Morokuma K (1999) In: ACS symposium series 721:transition state modeling for catalysis. American Chemical Society, Washington, DC

  138. 138.

    Davidson ER (2000). Chem Rev 100: 351

    CAS  Google Scholar 

  139. 139.

    Siegbahn PEM and Blomberg MRA (2000). Chem Rev 100: 421

    CAS  Google Scholar 

  140. 140.

    Gladysz JA (2000). Chem Rev 100: 1167

    CAS  Google Scholar 

  141. 141.

    Rappe AK, Skiff WM and Casewit CJ (2000). Chem Rev 100: 1435

    CAS  Google Scholar 

  142. 142.

    Lovelll T, Stranger R and McGrady JE (2001). Inorg chem, 40: 39

    Google Scholar 

  143. 143.

    Bertini I, Sigel A and Sigel H (2001). Handbook on Metalloproteins. Marcel Dekker, New York

    Google Scholar 

  144. 144.

    Coperat C, Chabonas M, Saint-Arromon RP and Basset J-M (2003). Angew Chem Int Ed 42: 156

    Google Scholar 

  145. 145.

    Cavigliasso G and Stranger R (2005). Inorg Chem 44: 5081

    CAS  Google Scholar 

  146. 146.

    Carreón-Macedo J-L and Harvey JN (2006). Phys Chem Chem Phys 8: 93

    Google Scholar 

  147. 147.

    Tuma C and Sauer J (2006). Phys Chem Chem Phys 8: 3955

    CAS  Google Scholar 

  148. 148.

    Pople JA, Scott AP and Wong MW (1993). Israel J Chem 33: 345

    CAS  Google Scholar 

  149. 149.

    Scott AP and Radom L (1996). J Phys Chem 100: 16502

    CAS  Google Scholar 

  150. 150.

    Fast PL, Corchado J, Sanchez ML and Truhlar DG (1999). J Phys Chem A 103: 3139

    CAS  Google Scholar 

  151. 151.

    Herzberg G (1966). Molecular spectra and molecular structure. III.Electronic spectra and electronic structure of polyatomic molecules. Van Nostrand Reinhold, New York

    Google Scholar 

  152. 152.

    NIST Chemistry Webbook, http://webbook.nist.gov/chemistry

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Donald G. Truhlar.

Additional information

Contribution to the Mark S. Gordon 65th Birthday Festschrift Issue.

An erratum to this article is available at http://dx.doi.org/10.1007/s00214-007-0401-8.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Cite this article

Zhao, Y., Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Account 120, 215–241 (2008). https://doi.org/10.1007/s00214-007-0310-x

Download citation

Keywords

  • Density functional theory
  • Exchange
  • Correlation
  • Metals
  • Organic molecules