Theoretical Chemistry Accounts

, Volume 119, Issue 1–3, pp 143–153 | Cite as

Regional organic geochemistry of host sediments of Palaeoproterozoic McArthur River Ore deposit, Australia

  • Karen L. Mackenzie
  • Craig P. Marshall
  • Malcolm R. Walter
Regular Article

Abstract

The 1,640 Ma HYC (Here’s Your Chance) deposit at McArthur River, Northern Territory, Australia, is one of the largest and least metamorphosed Proterozoic stratiform lead-zinc-silver deposits in the world. The thermal history of the deposit is a currently not well understood, both low and high temperature mechanisms have been proposed. From our study we were able to estimate (from both kerogen and bitumen thermal maturity indices which concur) the thermal maturity to be equivalent to Ro 1.1–2.0%, corresponding to the wet gas generation zone, with a maximum relatively low burial temperature range of 120–180 °C in the ore samples. Regionally, temperatures were not further constrained due to the complex and dynamic nature of the sedimentary environment.

Keywords

Hydrothermal Bitumen Mineralisation Kerogen Raman spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lambert IB and Scott KM (1973). J Geochem Explor 2: 307–330 CrossRefGoogle Scholar
  2. 2.
    Legge PJ, Lambert IB (1994) Spec. Pub no. 10, Soc. Geol. Applied to Mineral Deposits. Springer, Heidleberg, pp 299-332Google Scholar
  3. 3.
    Large RR, Bull SW, Cooke DR and McGoldrick PJ (1998). Econ Geol 93: 1345–1368 Google Scholar
  4. 4.
    Large RR, Bull SW and McGoldrick PJ (2001). Econ Geol 96: 1567–1593 CrossRefGoogle Scholar
  5. 5.
    Ireland T, Large RR, McGoldrick P and Blake M (2004). Econ Geol 99: 1687–1709 CrossRefGoogle Scholar
  6. 6.
    Gustafson LB, Williams N (1981) Econ Geol 75th Anniversary volume, pp 139–178Google Scholar
  7. 7.
    Hinman MC (1996). James Cook University of North Queensland Economic Geology Research Unit, Extended Abstracts. Contribution 55: 56–59 Google Scholar
  8. 8.
    Walker RN, Logan RG and Binnekamp JG (1977). J Geol Soc Aust 24: 365–380 Google Scholar
  9. 9.
    Williams N and Logan RG (1981). Geol Soc Aust Abs 3: 8 Google Scholar
  10. 10.
    Muir MD (1983) Depositional environments of host rock to northern Australian lead-zinc deposits, with special reference to McArthur River. Mineralogical Association of Canada Short Course Handbook, vol 8, pp 141–147Google Scholar
  11. 11.
    Logan RG and Williams N (1984). Geol Soc Aust Abstr 12: 339–340 Google Scholar
  12. 12.
    Brown MC, Claxton CW, Plumb KA (1978) Bureau of Mineral Resources, Canberra, Record, 969/145, p 59Google Scholar
  13. 13.
    Bull SW (1998). Aust J Earth Sci 45: 21–32 CrossRefGoogle Scholar
  14. 14.
    Logan GA, Hinman MC, Walter MR and Summons RE (2001). Geochim Cosmochim Acta 65: 2317–2336 CrossRefGoogle Scholar
  15. 15.
    Chen J, Walter MR, Logan GA, Hinman MC and Summons RE (2003). Earth Planet Sci Lett 6636: 1–13 Google Scholar
  16. 16.
    Ireland T, Bull SW and Large R (2004). Miner Depos 39: 143–158 CrossRefGoogle Scholar
  17. 17.
    Simoneit BRT (1984). Org Geochem 6: 857–864 CrossRefGoogle Scholar
  18. 18.
    Simoneit BRT (1985). Hydrothermal petroleum: genesis, migration and deposition in Guaymas basin, Gulf of California. Can J Earth Sci 22: 1919–1926 Google Scholar
  19. 19.
    Simoneit BRT (1986). Geochimiya 11: 236–254 Google Scholar
  20. 20.
    Simoneit BRT and Fetzer JC (1996). Org Geochem 4: 1065–1077 CrossRefGoogle Scholar
  21. 21.
    Simoneit BRT, Goodfellow WD and Franklin JM (1992). Appl Geochem 7: 257–264 CrossRefGoogle Scholar
  22. 22.
    Simoneit BRT, Aboul-Kassim TAT and Tiercelin JJ (2000). Appl Geochem 15: 355–368 CrossRefGoogle Scholar
  23. 23.
    Croxford NJW and Jephcott S (1972). Aust Inst Min Metall Proc 243: 1–26 Google Scholar
  24. 24.
    Logan RG (1979) The geology and mineralogical zoning of the HYC Ag–Pb–Zn deposit, McArthur River, Northern Territory, Australia. M.Sc. Thesis, Australia National University, CanberraGoogle Scholar
  25. 25.
    Lambert IB (1976). The McArthur zinc-lead-silver deposit: features, metallogenesis and comparisons with other stratiform ore. In: Wolf, KH (eds) Handbook of Stratiform and Stratabound Ore Deposits., pp 535–585. Elsevier, Amsterdam Google Scholar
  26. 26.
    Eldridge CS, Williams N and Walsh JL (1993). Econ Geol 88: 1–26 CrossRefGoogle Scholar
  27. 27.
    Smith, Croxford (1973) Nature Phys Sci 245:10–12Google Scholar
  28. 28.
    Williams N (1978). Econ Geol 73: 1005–1035 Google Scholar
  29. 29.
    Williams N (1978). Econ Geol 73: 1036–1056 Google Scholar
  30. 30.
    Durand B (1980) Kerogen: insoluable organic matter from sedimentary rocks. Paris, Editions Technip., pp 1–519Google Scholar
  31. 31.
    Eva Calvo, Carlos Pelegero and Grahma A. Logan (2003). J Chromatogr A 989: 197–205 CrossRefGoogle Scholar
  32. 32.
    Chen J, Fu J, Sheng G, Liu D and Zhang J (1996). Org Geochem 25: 179–190 CrossRefGoogle Scholar
  33. 33.
    Tuingstra F and Koenig JL (1970). J Chem Phys 53: 1126–1130 CrossRefGoogle Scholar
  34. 34.
    Katagiri G, Ishida H and Ishitani A (1988). Carbon 26: 565–571 CrossRefGoogle Scholar
  35. 35.
    Wang Y, Alsmeyer DC, Mceery RL (1990) Chem Mater 2557–2563Google Scholar
  36. 36.
    Dresselhaus MS and Dresselhaus G (1981). Adv Phys 30: 290–298 CrossRefGoogle Scholar
  37. 37.
    Zerda TW, John A and Chmura K (1981). Fuel 60: 375–378 CrossRefGoogle Scholar
  38. 38.
    Nakamizo M, Kammereck R and Walker PJ (1974). Carbon 12: 259–267 CrossRefGoogle Scholar
  39. 39.
    Al-Jishi and Dresselhaus (1982). Phys Rev B 26: 4514–4522 CrossRefGoogle Scholar
  40. 40.
    Cuesta A, Dhamelincourt P, Laureyns J, Martinez-Alonso A and Tascon JMD (1994). Carbon 32: 1523–32 CrossRefGoogle Scholar
  41. 41.
    Beny-Bassez C and Rouszaud JN (1985). Characterisation of carbonaceous materials by correlated electron and optical mioscopy and raman miospectroscopy. Scan Elect Miosc. 1: 119–132 Google Scholar
  42. 42.
    Hunt JM (1996). Petroleum geochemistry and geology, 2nd edn. W.H. Freeman and Company, New York, 1–389 Google Scholar
  43. 43.
    Kawka OE and Simoniet BRT (1990). Appl Geochem 5: 17–27 CrossRefGoogle Scholar
  44. 44.
    Simoneit BRT, (1994) Proceedings of the ocean drilling program, scientific results, vol 139, pp 447–465Google Scholar
  45. 45.
    Warner MC (1998) Geochemical characterization of sedimentary organic matter and hydrothermal petroleum in the black shale-hosted Zn–Pb deposit at Red Dog Mine, Western Brooks Range, Alaska. PhD Thesis, Indiana UniversityGoogle Scholar
  46. 46.
    Puttman W, Hagemann HW, Merz C and Speczik S (1988). Org Geochem 13: 357–363 CrossRefGoogle Scholar
  47. 47.
    Puttman W, Heppenheimer H and Diedel R (1990). Org Geochem 16: 1145–1156 CrossRefGoogle Scholar
  48. 48.
    Simoneit BRT (1990). App Geochem 5: 3–15 CrossRefGoogle Scholar
  49. 49.
    Hughes WB, Holba AG and Leon IPD (1995). Geochim Cosmochim Acta. 59: 3581–3598 CrossRefGoogle Scholar
  50. 50.
    Radke DH, Welte DH and Willsch H (1986). Org Geochem 10: 51–63 CrossRefGoogle Scholar
  51. 51.
    Peters KE, Moldowan JM (1993) The biomarker guide—interpreting molecular fossils in petroleum and ancient sediments. Prentice–Hall, New Jersey, pp 1–363Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Karen L. Mackenzie
    • 1
    • 2
  • Craig P. Marshall
    • 3
    • 4
  • Malcolm R. Walter
    • 3
  1. 1.School of GeosciencesUniversity of SydneySydneyAustralia
  2. 2.Water and Environment Business UnitSinclair Knight MerzPerthAustralia
  3. 3.Australian Centre for Astrobiology, Department of Earth and Planetary SciencesMacquarie UniversitySydneyAustralia
  4. 4.School of ChemistryUniversity of SydneySydneyAustralia

Personalised recommendations