Skip to main content
Log in

Quantum chemical prediction of the 13C NMR shifts in alkyl and chlorocorannulenes: correction of chlorine effects

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Prediction of the 13C NMR shifts of sym-pentachlorocorannulene and decachlorocorannulene provided impetus for the development of a correction scheme based on a regression of experimental and quantum chemical data. A training set of 15 compounds (18 carbon signals) comprising carbons atoms bearing 1–4 chlorine atoms leads to an estimated error per chlorine atom of about 10–12 ppm. Specifically, linear regression of the data obtained at B3LYP/cc-pVDZ leads to y = −3.77 + 13.11x, with R = 0.982. Ultimately, experiment and theory converge for sym-pentachlorocorannulene and decachlorocorannulene, the former by correction of the theory, the latter by collecting the proper experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cimino P, Gomez-Paloma L, Duca D, Riccio R and Bifulco G (2004). Magn Reson Chem 42: 526

    Article  CAS  Google Scholar 

  2. Rychnovsky SD (2006). Org Let 8: 2895

    Article  CAS  Google Scholar 

  3. Seiders TJ, Baldridge KK and Siegel JS (1999). J Am Chem Soc 121: 7439

    Article  CAS  Google Scholar 

  4. Seiders TJ, Elliott EL, Grube GH and Siegel JS (1999). J Am Chem Soc 121: 7804

    Article  CAS  Google Scholar 

  5. d‘Antuono R, Botek E, Champagne B, Spassova M and Denkova P (2006). J Chem Phys 125: 144309

    Article  CAS  Google Scholar 

  6. Gryff-Keller A and Molchanov S (2004). Mol Phys 102: 1903

    Article  CAS  Google Scholar 

  7. Kaupp M, Malkina O and Malkin V (1997). Chem Phys Lett 265: 55

    Article  CAS  Google Scholar 

  8. Cheng P-C (1996). Corannulene: Novel synthesis and reactions (Fullerenes). Dissertation, Boston College p 254

  9. Samdal S, Hedberg L, Hedberg K, Richardson AD, Bancu M and Scott LT (2003). J Phys Chem 107: 411

    CAS  Google Scholar 

  10. Bancu M, Rai AK, Cheng P-C, Gilardi RD, Scott LT (2004) Synlett 0173

  11. Huang R, Huang W, Wang Y, Tang Z and Zheng L (1997). J Am Chem Soc 119: 5954

    Article  CAS  Google Scholar 

  12. Gordon MS and Merrill GN (1999). J Chem Phys 110: 6154

    Article  Google Scholar 

  13. Gordon MS and Truhlar DG (1986). J Am Chem Soc 108: 5412

    Article  CAS  Google Scholar 

  14. Kaupp M, Bühl M, Malkin VG (2004) Wiley-VCH, Weinheim, p 603

  15. Bühl M, Kaupp M, Malkina OL and Malkin VG (1999). J Comp Chem 20: 91

    Article  Google Scholar 

  16. Wilson PJ (2003). Ann Rep NMR Spect 49: 117

    Article  CAS  Google Scholar 

  17. Gauss J, Stanton JF (2004). In: Kaupp M, Bühl M, Malkin V (eds) Calculation of NMR and EPR Parameters. Wiley-VCH, Weinheim p 123

  18. Gauss J and Stanton JF (2002). Adv chem Phys 123: 355

    Article  CAS  Google Scholar 

  19. Meiler J, Meusinger R and Will M (1999). Monatsh Chem 130: 1089

    CAS  Google Scholar 

  20. Neudert R and Penk M (1996). J Chem Inf Comput Sci 36: 244

    Article  CAS  Google Scholar 

  21. Pretsch E, Fürst A, Badertscher M and Bürgin R (1992). J Chem Inf Comput Sci 32: 291

    CAS  Google Scholar 

  22. Meiler J, Sanli E, Junker J, Meusinger R, Lindel T, Will M, Maier W and Köck M (2002). J Chem Inf Comput Sci 42: 241

    Article  CAS  Google Scholar 

  23. Forsyth DA and Sebag AB (1997). J Am Chem Soc 119: 9483

    Article  CAS  Google Scholar 

  24. Baldridge KK and Siegel JS (1999). J Phys Chem 103: 4038

    CAS  Google Scholar 

  25. Giesen DJ and Sumbulyadis N (2002). Phys Chem Chem Phys 4: 5498

    Article  CAS  Google Scholar 

  26. Weston J and Ahlbrecht H (1997). J Chem Soc Perkin Trans 2: 1003

    Google Scholar 

  27. Wiitala KW, Hoye TR and Cramer CJ (2006). J Chem Theory Comput 2: 1085

    Article  CAS  Google Scholar 

  28. Laws DD, Le H, De Dios AC, Havlin RH and Oldfield E (1995). J Am Chem Soc 117: 9542

    Article  CAS  Google Scholar 

  29. Schmidt MW, Baldridge KK, Boatz JA, Jensen JH, Koseki S, Gordon MS, Nguyen KA, Windus TL and Albert ST (1990). Quantum Chemistry Program Exch Bull 10: 10

    Google Scholar 

  30. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomergy JA, Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishido M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin J, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Doannernberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, KFarkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DG, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challocombe M, Gill PMW, Johnson BG, chen W, Wong MW, Gonzalez C, Pople JA (2004). Gaussian Inc., Wallingford

  31. Mϕller C and Plesset MS (1934). Phys Rev 46: 618

    Article  Google Scholar 

  32. Parr RG and Yang W (1989). Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  33. Lee C, Yang W and Parr RG (1988). Phys Rev B 37: 785

    Article  CAS  Google Scholar 

  34. Miehlich B, Savin A, Stoll H and Preuss H (1989). Chem. Phys. Lett. 157: 200

    Article  CAS  Google Scholar 

  35. Adamo C and Barone V (1998). J Chem Phys 108: 664

    Article  CAS  Google Scholar 

  36. Perdew JP and Wang Y (1992). Phys Rev B 45: 13244

    Article  Google Scholar 

  37. Becke AD (1996). J Chem Phys 104: 1040

    Article  CAS  Google Scholar 

  38. Adamo C and Barone V (1998). J Comput Chem 19: 418

    Article  CAS  Google Scholar 

  39. Ditchfield R, Hehre WJ and Pople JA (1971). J Chem Phys 54: 724

    Article  CAS  Google Scholar 

  40. Hehre WJ and Lathan WA (1972). J Chem Phys 56: 5255

    Article  CAS  Google Scholar 

  41. Krishnan R, Binkley JS, Seeger R and Pople JA (1980). J Chem Phys 72: 650

    Article  CAS  Google Scholar 

  42. Dunning TH (1970). Chem Phys Lett 7: 423

    Article  CAS  Google Scholar 

  43. Dunning TH (1989). J Chem Phys 90: 1007

    Article  CAS  Google Scholar 

  44. Kendall RA, Dunning TH and Harrison RJ (1992). J Chem Phys 96: 6796

    Article  CAS  Google Scholar 

  45. Woon DE and Dunning TH (1993). J Chem Phys 98: 1358

    Article  CAS  Google Scholar 

  46. Seiders TJ, Baldridge KK, Gleiter R and Siegel JS (2000). Tetrahedron Lett 41: 4519

    Article  CAS  Google Scholar 

  47. Seiders TJ, Baldridge KK, Grube GH and Siegel JS (2001). J Am Chem Soc 123: 517

    Article  CAS  Google Scholar 

  48. Seiders TJ, Baldridge KK, O’Connor JM and Siegel JS (1997). J Am Chem Soc 119: 4781

    Article  CAS  Google Scholar 

  49. Seiders TJ, Baldridge KK, O’Connor JM and Siegel JS (2004). Chem Commun 8: 950

    Article  CAS  Google Scholar 

  50. Seiders TJ, Baldridge KK and Siegel JS (1996). Journal Of the American Chemical Society 118: 2754

    Article  CAS  Google Scholar 

  51. Seiders TJ, Baldridge KK, Siegel JS and Gleiter R (2000). Tetrahedron Lett 41: 4519

    Article  CAS  Google Scholar 

  52. Seiders TJ, Elliot E, Baldridge KK and Siegel JS (1999). Abstr Pap Am Chem Soc 217: U166

    Google Scholar 

  53. Douglas M and Kroll NM (1974). Ann Phys 82: 89

    Article  CAS  Google Scholar 

  54. Hess BA (1985). Phys Rev A 32: 756

    Article  CAS  Google Scholar 

  55. Hess BA (1986). Phys Rev A 33: 3742

    Article  CAS  Google Scholar 

  56. Wolf A, Reiher M and Hess BA (2002). J Chem Phys 117: 9215

    Article  CAS  Google Scholar 

  57. Melo JI, Ruiz de Azua MC, Peralta JE and Scuseria GE (2005). J Chem Phys 123: 204112

    Article  CAS  Google Scholar 

  58. Chesnut DB (1997). Chem Phys 314: 73

    Article  Google Scholar 

  59. Chestnut DB (1989) In: Webb GA (ed) Annual reports on NMR Spectroscopy, vol 21. Academic Press, San Diego

  60. Chestnut DB (1994) In: Webb GA (ed) Annual reports on NMR Spectroscopy, vol 29. Academic Press, San Diego

  61. Chestnut DB (1997) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 8. VCH New York

  62. Keith TA and Bader RFW (1993). Chem Phys Lett 210: 223

    Article  CAS  Google Scholar 

  63. Keith TA and Bader RFW (1992). Chem Phy Lett 194: 1

    Article  CAS  Google Scholar 

  64. Ditchfield R (1972). J Chem Phys 56: 5688

    Article  CAS  Google Scholar 

  65. Wolinski K, Hinton JF and Pulay P (1990). J Am Chem Soc 112: 8521

    Article  Google Scholar 

  66. Petrukhina MA, Andreini KW, Mack J and Scott LT (2005). J Org Chem 70: 5713

    Article  CAS  Google Scholar 

  67. Biedermann PU, Pogodin S and Agranat I (1999). J Org Chem 64: 3655

    Article  CAS  Google Scholar 

  68. Potier Y, Siegel JS, Baldridge KK in preparation

  69. Costa VEU, Alifantes J, Axt M, Mollmann MES and Seidl PR (1999). J Braz Chem Soc 10: 341

    Article  CAS  Google Scholar 

  70. Glaser R, Chen N, Wu H, Knotts N and Kaupp M (2004). J Am Chem Soc 126: 4412

    Article  CAS  Google Scholar 

  71. Eloranta J, Hu J, Suontamo R, Kolehmalnen E and Knuutinen J (2000). Magn Res Chem 38: 987

    Article  CAS  Google Scholar 

  72. Shoolery JN (1995). Prog Nuc Magn Spectr 28: 37

    Article  CAS  Google Scholar 

  73. Stahl M, Schopfer U, Frenking G and Hoffmann RW (1996). J Org Chem 61: 8083

    Article  CAS  Google Scholar 

  74. Stahl M, Schopfer U, Frenking G and Hoffman RW (1997). J Org Chem 62: 8083

    Article  Google Scholar 

  75. Stahl M, Schopfer U, Frenking G and Hoffman RW (1997). Mol Phys 92: 569

    Article  CAS  Google Scholar 

  76. Evans J and Norton JR (1974). Inorg Chem 13: 3043

    Article  Google Scholar 

  77. Siegel JS, Baldridge KB and Dorta R (2006). J Am Chem Soc 128: 10644

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim K. Baldridge.

Additional information

Contribution to the Mark S. Gordon 65th Birthday Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldridge, K.K., Siegel, J.S. Quantum chemical prediction of the 13C NMR shifts in alkyl and chlorocorannulenes: correction of chlorine effects. Theor Chem Account 120, 95–106 (2008). https://doi.org/10.1007/s00214-007-0291-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-007-0291-9

Keywords

Navigation