Advertisement

Theoretical Chemistry Accounts

, Volume 118, Issue 2, pp 443–448 | Cite as

Free volume from molecular dynamics simulations and its relationships to the positron annihilation lifetime spectroscopy

  • Dušan Račko
  • Riccardo ChelliEmail author
  • Gianni Cardini
  • Salvatore Califano
  • Josef Bartoš
Regular Article

Abstract

The free volume micro-structural properties of propylene glycol obtained by means of molecular dynamics simulations have been investigated and compared with the experimental data from positron annihilation lifetime spectroscopy (PALS). The results are also compared to those recently obtained on glycerol. The bulk microstructures of the samples have been analyzed in the temperature range 100–350 K with a probe-based procedure for exploring the free volume cavities of the microstructures. The basic free volume property, i.e., mean cavity volume, is compared with the hole volume data from PALS. A comparison between calculated and experimental data suggests the existence of a threshold volume for the smallest cavity detectable by PALS, which may be ascribed to fast local motions of the matrix constituents. At high temperatures the cavity analysis reveals the formation of an infinite cavity, i.e., percolation phenomenon. The onset temperatures of the percolation process in propylene glycol and glycerol are found to be close to the characteristic PALS temperature \(T^{\rm L}_{\rm b2}\) , where a pronounced change in the PALS response occurs, as well as to the characteristic dynamic Schönhals temperature \(T^{\rm SCH}_{\rm B}\) , and Stickel’s temperature \(T^{\rm ST}_{\rm B}\) , marking a dramatic change in the primary α properties.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

References

  1. 1.
    Donth E (2000). The Glass Transition. Springer, Berlin Google Scholar
  2. 2.
    Adichtchev S, Blochowicz T, Tschirwitz C, Novikov VN, Rössler EA (2003). Phys Rev E 68: 011504 CrossRefGoogle Scholar
  3. 3.
    Stickel F, Fischer EW, Richert R (1996). J Chem. Phys 102: 6251 CrossRefGoogle Scholar
  4. 4.
    Stickel F (1995) PhD Thesis, Shaker Verlag AachenGoogle Scholar
  5. 5.
    Schönhals A (2001). Europhys Lett 56: 815 CrossRefGoogle Scholar
  6. 6.
    Goldstein M (1969). J Chem Phys 51: 3728 CrossRefGoogle Scholar
  7. 7.
    Paluch M, Casalini R, Roland M (2003). Phys Rev. E 67: 021508 CrossRefGoogle Scholar
  8. 8.
    Casalini R, Ngai KL, Roland CM (2003). Phys Rev B 68: 014201 CrossRefGoogle Scholar
  9. 9.
    Bartoš J, Šauša O, Krištiak J, Blochowicz T, Rössler E (2001). J Phys Cond Matt 13: 11473 CrossRefGoogle Scholar
  10. 10.
    Ngai KL, Bao LR, Yee AF, Soles ChL Yee (2001). Phys Rev Lett 87: 215901 CrossRefGoogle Scholar
  11. 11.
    Bartoš J, Šauša O, Bandžuch P, Zrubcová J, Krištiak J, Non-Cryst J (2002). Solids 307–310: 417 Google Scholar
  12. 12.
    Bendler JT, Fontanella JJ, Shlesinger MF, Bartoš J, Šauša O, Krištiak J (2005). Phys Rev E 71: 0315089 CrossRefGoogle Scholar
  13. 13.
    Račko D, Chelli R, Cardini G, Bartoš J, Califano S (2005). Eur Phys J D 32: 289 CrossRefGoogle Scholar
  14. 14.
    Procacci P, Darden TA, Paci E, Marchi M (1997). J Comput Chem 18: 1848 CrossRefGoogle Scholar
  15. 15.
    CornellWD, Cieplak P, BaylyCI, Gould IR, Merz KM, Jr., Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179 CrossRefGoogle Scholar
  16. 16.
    Chelli R, Procacci P, Cardini G, Della Valle RG, Califano S (1999) Phys Chem Chem Phys 1:871 (The σ parameters of the Lennard-Jones potential reported in Table 1 are wrong. The correct values are: 3.4, 3.0665 and 2.4713 Å for the atoms C, O and non-hydroxy H, respectively)Google Scholar
  17. 17.
    Andersen HC (1980). J Chem Phys 72: 2384 CrossRefGoogle Scholar
  18. 18.
    Hoover WG (1985) Phys Rev A 31:1695; Hoover WG (1986) Phys Rev A 34:2499Google Scholar
  19. 19.
    Kovacs AJ (1964). Fortschr Hochpolym-Forsch 3: 394 Google Scholar
  20. 20.
    Parks GS, Huffman HM (1927). J Chem Phys 31: 184 Google Scholar
  21. 21.
    Beiner M, Huth H, Schröter K (2001). J Noncryst Sol 279: 126 CrossRefGoogle Scholar
  22. 22.
    Sastry S, Truskett TM, Debenedetti G, Torquato S, Stillinger FH (1998). Mol Phys 95: 289 CrossRefGoogle Scholar
  23. 23.
    Tao SJ (1972). J Chem Phys 56: 5499 CrossRefGoogle Scholar
  24. 24.
    Eldrup M, Lightbody D, Sherwood JN (1981). Chem Phys 63: 51 CrossRefGoogle Scholar
  25. 25.
    Nakanishi H, Wang SJ, Jean YC (1988) In: Sharma SC (ed) Positron annihilation studies of fluids. World Scientific, Singapore p 292Google Scholar
  26. 26.
    Bartoš J, Šauša O, Krištiak J (in press)Google Scholar
  27. 27.
    Bartoš J, Šauša O, Račko D, Krištiak J, Fontanella JJ (2005). J Noncryst Solids 351: 2599 CrossRefGoogle Scholar
  28. 28.
    Bartoš J, Račko D, Šauša O, Krištiak J (2007) Positron annihilation lifetime spectroscopy and atomistic modeling—effective tools for the disordered condensed system characterization, ARW NATO Series. Springer, Berlin, p 110Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Dušan Račko
    • 1
    • 3
  • Riccardo Chelli
    • 2
    • 3
    Email author
  • Gianni Cardini
    • 2
    • 3
  • Salvatore Califano
    • 2
    • 3
  • Josef Bartoš
    • 1
  1. 1.Polymer InstituteSlovak Academy of SciencesBratislavaSlovakia
  2. 2.Dipartimento di ChimicaUniversità di FirenzeSesto FiorentinoItaly
  3. 3.European Laboratory of Non-linear SpectroscopySesto FiorentinoItaly

Personalised recommendations