Advertisement

Theoretical Chemistry Accounts

, Volume 118, Issue 2, pp 399–405 | Cite as

Density functional theoretical study of A series of pentazolide compounds \(\hbox{A}_{\it n}(\hbox{N}_5)_{\rm 6-{\it n}}^{\it q}\) (A = B, Al, Si, P, and S; n = 1–3; q = +1, 0, −1, −2, and −3)

  • Qian Shu LiEmail author
  • Yan Zhang
Regular Article

Abstract

The structure and the stability of pentazolide compounds \(\hbox{A}_{\it n}(\hbox{N}_5)_{\rm 6-{\it n}}^{\it q}\) (A = B, Al, Si, P, and S; n= 1–3; q = +1, 0, −1, −2, and −3), as high energy-density materials (HEDMs), have been investigated at the B3LYP/6-311+G* level of theory. The natural bond orbital analysis shows that the charge transfer plays an important role when the \(\hbox{A}_{\it n}(\hbox{N}_5)_{\rm 6-{\it n}}^{\it q}\) species are decomposed to \(\hbox{A}_{\it n}(\hbox{N}_5)_{\rm 5-{\it n}}\hbox{N}_3^{\it q}\) and N2. The more negative charges are transferred from the N2 molecule after breaking the N5 ring, the more stable the systems are with respect to the decomposition. Moreover, the conclusion can be drawn that \({\hbox{Al}(\hbox{N}_5)_5^{2-}}\) and \({\hbox{Al}_2(\hbox{N}_5)_4^{2-}}\) are predicted to be suitable as potential HEDMs.

Keywords

Pentazolide compounds Density functional theoretical study \(\hbox{A}_{\it n}(\hbox{N}_{\rm 5})_{\rm 6-{\it n}}^{\it q}\) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Curtius T (1890). Dtsch Chem Ges 23:3023Google Scholar
  2. Christe KO, Wilson WW, Sheehy JA, Boatz JA (1999). Angew Chem Int Ed 38: 2004CrossRefGoogle Scholar
  3. Cacace F, Petris G, Troiani A (2002). Science 295:480CrossRefGoogle Scholar
  4. Burke LA, Butler RN, Stephens JC (2001). J Chem Soc Perkin Trans 2:1679Google Scholar
  5. Gagliardi L, Pyykkö P (2001). J Am Chem Soc 123:9700CrossRefGoogle Scholar
  6. Gagliardi L, Pyykkö P (2002). J Phys Chem A 106:4690CrossRefGoogle Scholar
  7. Glukhovtsev MN, Jiao H, Schleyer PvR (1996). Inorg Chem 35:7124CrossRefGoogle Scholar
  8. Glukhovtsev MN, Schleyer PvR, Maerker C (1993). J Phys Chem 97:8200CrossRefGoogle Scholar
  9. Straka M (2002). Chem Phys Lett 358:531CrossRefGoogle Scholar
  10. Vij A, Pavlovich JG, Wilson WW, Vij V, Christe KO (2002). Angew Chem Int Ed 41:3051CrossRefGoogle Scholar
  11. Wang L, Mezey PG (2004). Chem Phys Lett 387:233CrossRefGoogle Scholar
  12. Wang L, Warburton PL, Mezey PG (2005). J Phys Chem A 109:1125CrossRefGoogle Scholar
  13. Wilson KJ, Perera SA, Bartlett RJ, Watts JD (2001). J Phys Chem A 105:7693CrossRefGoogle Scholar
  14. Zandwijk Gv, Janssen RAJ, Buck HM (1990). J Am Chem Soc 112:4155CrossRefGoogle Scholar
  15. Fenske D, Dörner H-D, Dehnicke KZ (1983). Naturforsch B: Chem Sci 38:1301Google Scholar
  16. Filippou AC, Portius P, Neumann DU, Wehrstedt KD (2000). Angew Chem Int Ed 39:4333CrossRefGoogle Scholar
  17. Filippou AC, Portius P, Schnakenburg G (2002). J Am Chem Soc 124:12396CrossRefGoogle Scholar
  18. Karaghiosoff K, Klapotke TM, Krumm B, Noth H, Schutt T, Suter M (2002). Inorg Chem 41:170CrossRefGoogle Scholar
  19. Polborn K, Leidl E, Beck WZ (1988). Z Naturforsch B Chem Sci 43:1206Google Scholar
  20. Roesky HW (1967). Angew Chem Int Ed 79:651CrossRefGoogle Scholar
  21. Wu H-S, Xu X-H, Jiao H (2005). Chem Phys Lett 412:299CrossRefGoogle Scholar
  22. Nguyen MT, Ha T-K (2001). Chem Phys Lett 335:311CrossRefGoogle Scholar
  23. Benin V, Kaszynski P, Radziszewski JG (2002). J Org Chem 67:1354CrossRefGoogle Scholar
  24. Klapötke TM, Harcourt RD (2001). J Mol Struct 541:237CrossRefGoogle Scholar
  25. Straka M, Pyykkö P (2003). Inorg Chem 42:8241CrossRefGoogle Scholar
  26. Becke AD (1993). J Chem Phys 98:5648CrossRefGoogle Scholar
  27. Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785CrossRefGoogle Scholar
  28. Hehre WJ, Radom L, Schleyer PvR, Pople JA (1996) Ab Initio molecular orbital theory. Wiley New YorkGoogle Scholar
  29. Gonzalez C, Schlegel HB (1989). J Chem Phys 90:2154CrossRefGoogle Scholar
  30. Reed AE, Weinstock RB, Weinhold F (1985). J Chem Phys 83:735CrossRefGoogle Scholar
  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr., Vreven T, Kudin KN, Burant JC, Millam JM, Iyergar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li XK, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramilo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Avala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Pople JA (2003). Gaussian 03, Revision B4, Gaussian, Inc., PittsburghGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.State Key Laboratory of Explosion Science and Technology, Institute for Chemical PhysicsBeijing Institute of TechnologyBeijingChina
  2. 2.College of Live and Environmental SciencesCentral University for NationalitiesBeijingChina

Personalised recommendations