Advertisement

Theoretical Chemistry Accounts

, Volume 118, Issue 2, pp 363–369 | Cite as

A study of influence of temperature and N, N-acyl protected keto ylides structure on their predominant transformations

  • D. A. ChuvashovEmail author
  • I. V. Vakulin
  • F. Z. Galin
  • R. F. Talipov
Regular Article

Abstract

The effect of temperature and keto ylides structure on preference of their intramolecular cyclization leading to N-containing heterocyclic compounds or linear products formation has been investigated at the B3LYP/6-31G(d,p) level of theory. It has been determined that the thermodynamic advantage of the cyclization reactions of ylides increases with temperature, while Gibbs free energies of linear products formation reactions depend insignificantly on temperature. The Wittig and the Corey–Chaykovsky reactions are least probable in the case of the sulfonium and ammonium ylides considered. However, for phosphonium ylides the Wittig reaction must be considerably preferable in comparison with other routes, while behavior of the arsonium ylides is predicted to be more complex. Research of S-ylides transformations shows that formation of methylthio-substituted heterocycles with five-, six- or seven- membered rings is possible from a thermodynamic standpoint, while conversion of the corresponding ylide to a four-membered heterocycle is disadvantageous. Presence of a methyl substituent and its position in the ylide carbon chain depends ambiguously on the behavior of sulfur keto ylides.

Keywords

N, N-acyl protected keto ylides Intramolecular cyclization Effect of structure Thermal dependencies of Gibbs free energy of reactions DFT calculation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Trost BM, Melvin LS (1975) Sulfur ylides, emerging synthetic intermediates. Academic, New YorkGoogle Scholar
  2. 2.
    Kartsev VG (2002) Selected methods for synthesis and modification of heterocycles, vol 2. IBS Moscow, pp 107–139Google Scholar
  3. 3.
    Akiyama H, Fujimoto T, Ohshima K, Hoshino K, Saito Y, Okamoto A, Yamamoto I, Kakehi A, Iriye R (2001). Eur J Org Chem 12:2265–2272CrossRefGoogle Scholar
  4. 4.
    Abdou WM, Fahmy AFM, Kamel AA (2002). Heteroat Chem 13:357–365CrossRefGoogle Scholar
  5. 5.
    Jonson A (1966) Ylide chemistry. Academic, New YorkGoogle Scholar
  6. 6.
    Rotaru AV, Druta ID, Oeser T, Muller TJJ (2005). Helv Chim Acta 88:1798–1812CrossRefGoogle Scholar
  7. 7.
    Corey EJ, Chaykovsky MJ (1965). J Am Chem Soc 87:1353–1364CrossRefGoogle Scholar
  8. 8.
    Corey EJ, Chaykovsky MJ (1962). J Am Chem Soc 84:867–868CrossRefGoogle Scholar
  9. 9.
    Li A-H, Dai L-X, Aggarwal VK (1997). Chem Rev 97:2341–2373CrossRefGoogle Scholar
  10. 10.
    Aggarwal VK (1998). Syn Lett 4:329–332Google Scholar
  11. 11.
    Akiyama H, Ohshima K, Fujimoto T, Yamamoto I, Iriye R (2002). Heteroat Chem 13:216–222CrossRefGoogle Scholar
  12. 12.
    Wittig G, Geissler G (1953). Liebigs Ann Chem 44:580–583Google Scholar
  13. 13.
    Johnson AW (1993) Ylides and imines of phosphorus. Wiley, New YorkGoogle Scholar
  14. 14.
    Martin T, Soler MA, Betancort JM, Martin VS (1997). J Org Chem 62:1570–1573CrossRefGoogle Scholar
  15. 15.
    Schollkopf WGU (1970). Angew Chem Int Ed 9:763–765CrossRefGoogle Scholar
  16. 16.
    Vedejs E, Peterson MJ (1994). Top Stereochem 21:1–157CrossRefGoogle Scholar
  17. 17.
    Tamara Y, Miyamoto T, Kita Y (1974). Chem Commun 6:531–534Google Scholar
  18. 18.
    Burgess EM, Pulcrano MC (1978). J Am Chem Soc 100:6538–6539CrossRefGoogle Scholar
  19. 19.
    Jung F, Sharma OE, Durst T (1973). J Am Chem Soc 95:3420–3422CrossRefGoogle Scholar
  20. 20.
    Okuma M, Tanaka Y, Ohta H (1981). J Am Chem Soc 103:5976–5977CrossRefGoogle Scholar
  21. 21.
    Dai W-M, Wu J, Huang X (1997). Tetrahedron Asymmetry 8:1979–1982CrossRefGoogle Scholar
  22. 22.
    He HS, Chung CWY, But TYS, Toy PH (2005). Tetrahedron 61:1385–1405CrossRefGoogle Scholar
  23. 23.
    Huang Z-Z, Yu X-C, Huang X (2002). Tetrahedron Lett 43:6823–6825CrossRefGoogle Scholar
  24. 24.
    Dai W-M, Wu J, Huang X (2002). Tetrahedron Asymmetry 13:2187–2191CrossRefGoogle Scholar
  25. 25.
    Aggarwal VK, Harvey JN, Robiette R (2005). Angew Chem Int Ed 44:5468–5471CrossRefGoogle Scholar
  26. 26.
    Fang X, Wu Y-M, Deng J, Wang S-W (2004). Tetrahedron 60:5487–5493CrossRefGoogle Scholar
  27. 27.
    Delattre F, Woisel P, Surpateanu G, Marc M, Cazier F, Decock P (2004). Tetrahedron 60:1557–1562CrossRefGoogle Scholar
  28. 28.
    Belfaitah A, Isly M, Carboni B (2004). Tetrahedron Lett 45:1969–1972CrossRefGoogle Scholar
  29. 29.
    Noguchi M, Shirai M, Nakashima K, Arai I, Nishida A, Yamamoto H, Kakehi A (2003). Tetrahedron 59:4581–4590CrossRefGoogle Scholar
  30. 30.
    Galin FZ, Lakeev SN, Tolstikov GA (1996). Russ Chem Bull 45:156–158CrossRefGoogle Scholar
  31. 31.
    Lakeev SN, Maidanova IO, Galin FZ, Tolstikov GA (2001). Russ Chem Rev 70:655–672CrossRefGoogle Scholar
  32. 32.
    Bestmann HJ, Moenius T, Soliman F (1986). Chem Lett 9:1527–1528CrossRefGoogle Scholar
  33. 33.
    Vakulin IV, Chuvashov DA, Talipov RF, Galin FZ (2006). J Mol Struct (Theochem) 763:29–35CrossRefGoogle Scholar
  34. 34.
    Chuvashov DA, Vakulin IV, Galin FZ, Talipov RF (2006). J Mol Struct (Theochem) 774:29–32CrossRefGoogle Scholar
  35. 35.
    Scott AP, Radom L (1996). J Phys Chem 100:16502–16508CrossRefGoogle Scholar
  36. 36.
    Granovsky AA http://classic.chem.msu.su/gran/gamess/index. htmlGoogle Scholar
  37. 37.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JJ, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993). J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  38. 38.
    Carey FA, Sundberg RJ (2000) Advanced organic chemistry. Kluwer Academic, New YorkGoogle Scholar
  39. 39.
    Smith MB, March J (2001) Advanced organic chemistry. Wiley-Interscience, New YorkGoogle Scholar
  40. 40.
    Carey FA (2004) Organic chemistry. McGraw-Hill, New YorkGoogle Scholar
  41. 41.
    Rizzo CJ (2002) Advanced organic reactions. Wiley- Interscience, New YorkGoogle Scholar
  42. 42.
    Lowry TH, Richardson KS (1987) Mechanism and theory in organic chemistry. Harper-Collins, New YorkGoogle Scholar
  43. 43.
    Chuvashov DA, Vakulin IV, Talipov RF, Galin FZ (2007). J Mol Struct (Theochem) 807:55–60CrossRefGoogle Scholar
  44. 44.
    Edmonds M (2004) The Wittig reaction. Wiley-VCH, WeinheimGoogle Scholar
  45. 45.
    Restrepo-Cossio A, Cano H, Mary F, Gonzalez CA (1997). Heteroatom Chem 8:557–569CrossRefGoogle Scholar
  46. 46.
    Lu WC, Wong NB, Zhang RQ (2002). Theor Chem Acc 107:206–210Google Scholar
  47. 47.
    Volatron F, Eisenstein O (1987). J Am Chem Soc 109:1–14CrossRefGoogle Scholar
  48. 48.
    Kirby AJ (1980). Adv Phys Org Chem 17:183–187CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • D. A. Chuvashov
    • 1
    Email author
  • I. V. Vakulin
    • 1
  • F. Z. Galin
    • 1
  • R. F. Talipov
    • 1
  1. 1.Department of ChemistryBashkir State UniversityUfaRussia

Personalised recommendations