Advertisement

Theoretical Chemistry Accounts

, Volume 118, Issue 2, pp 315–323 | Cite as

On the kinetic mechanism of reactions of hydroxyl radical with CHF2CH3 − n F n (n = 1–3)

  • Yue-meng Ji
  • Ze-sheng LiEmail author
  • Jing-yao Liu
Regular Article

Abstract

The potential energy surfaces of the reactions CHF2CH3 − n F n (n = 1–3) + OH were investigated by MPWB1K and BMC-CCSD (single-point) methods. Furthermore, with the aid of canonical variational transition state theory including the small-curvature tunneling correction, the rate constants of the title reactions were calculated over a wide temperature range of 220–1,500 K. Agreement between the CVT/SCT rate constants and the experimental values is good. Our results show that the order of rate constants is CHF2CH2F + OH > CHF2CHF2 + OH > CHF2CF3 + OH. For reaction CHF2CH2F + OH, the 1-H-abstraction channel dominates the reaction at the whole temperature, while 2-H-abstraction channel appears to be competitive with the increase of temperature.

Keywords

Title Reaction Zero Point Energy Correction Canonical Variational Transition State Theory Rate Constant Calculation Theoretical Rate Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tuck R, Plumb A, Condon E (1990). Geophys Rev Lett 17:313Google Scholar
  2. 2.
    Kerr JB (1991). Geophys Rev 96:20703Google Scholar
  3. 3.
    Stolarski R, Bojkoy R, Bishop L, Zerefos C, Staehelin J, Zawodny (1991). J Sci 256:342CrossRefGoogle Scholar
  4. 4.
    Kerr RA (1993). Science 262:501CrossRefGoogle Scholar
  5. 5.
    Barry J, Sidebottom H (1995). Int J Chem Kinetics 27:27CrossRefGoogle Scholar
  6. 6.
    Clyne MAA, Holt PM (1979). J Chem Soc Farad Trans 2, 75, 582Google Scholar
  7. 7.
    Martin JP, Paraskevopoulos G (1983). Can J Chem 61:861CrossRefGoogle Scholar
  8. 8.
    Demore WB (1993). Geophys Res 20:1359Google Scholar
  9. 9.
    Talukdar R, Mellouki A, Gierczak T, Burkholder JB, Mckeen SA, Ravishankara AR (1991). J Phys Chem 95:5815CrossRefGoogle Scholar
  10. 10.
    Martell JM, Boyd RJ (1995). J Phys Chem 99:13402CrossRefGoogle Scholar
  11. 11.
    Hu WP, Truhlar DG (1996). J Am Chem Soc 118:860CrossRefGoogle Scholar
  12. 12.
    Truhlar DG (1995) The reaction path in chemistry: current approaches and perspectives. Heidrich D (ed) Kluwer, Dordrecht, p 229Google Scholar
  13. 13.
    Truhlar DG, Garrett BC, Klippenstein SJ (1996). J Phys Chem 100:12771CrossRefGoogle Scholar
  14. 14.
    Truhlar DG, Garrett BC (1980). Acc Chem Res 13:440CrossRefGoogle Scholar
  15. 15.
    Truhlar DG, Isaacson AD, Garrett BC (1985) The theory of chemical reaction dynamics. Baer M (ed) CRC, Boca Raton, p 65Google Scholar
  16. 16.
    Truhlar DG, Garrett BC (1984) Annu Rev Phys Chem 35:159CrossRefGoogle Scholar
  17. 17.
    Frisch MJ, Truck GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Jr. Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Boboul AG, Stefnov BB, Liu G, Liaschenko A, Piskorz P, Komaromi L, Gomperts R, Martin RL, Fox DJ, Keith T, Al–Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head–Gordon M, Replogle ES, Pople JA (2003) GAUSSIAN 03, Revision A.1, Guassian, PittsburghGoogle Scholar
  18. 18.
    Lynch BJ, Zhao Y, Truhlar DG (2005). J Phys Chem A 109:1643CrossRefGoogle Scholar
  19. 19.
    Chuang YY, Corchado JC, Truhlar DG (1999). J Phys Chem 103:1140Google Scholar
  20. 20.
    Corchado JC, Chang Y-Y, Fast PL, Villa J, Hu W-P, Liu Y-P, Lynch GC, Nguyen KA, Jackels CF, Melissas VS, Lynch BJ, Rossi I, Coitino EL, Fernandez-Ramos A, Pu J-Z, Albu TV, Steckler R, Garrett BC, Isaacson AD, Truhlar DG (2002). POLYRATE version 9.1, University of Minnesota, MinneapolisGoogle Scholar
  21. 21.
    Garrett BC, Truhlar DG (1979). J Chem Phys 70:1593CrossRefGoogle Scholar
  22. 22.
    Liu Y-P, Lynch GC, Truong TN, Lu D-h, Truhlar DG, Garrett BC (1993). J Am Chem Soc 115:2408CrossRefGoogle Scholar
  23. 23.
    Lu DH, Truong TN, Melissas VS, Lynch GC, liu YP, Grarrett BC, Steckler R, Issacson AD, Rai SN, Hancock GC, Lauderdale JG, Joseph T, Truhlar DG (1992). Comput Phys Commun 71:235CrossRefGoogle Scholar
  24. 24.
    Beagley B, Brown DE (1979). J Mol Struct 54:175CrossRefGoogle Scholar
  25. 25.
    Brown DE, Beagley B (1977). J Mol Struct 38:167CrossRefGoogle Scholar
  26. 26.
    Beagley B, Jones MO, Yavari P (1981). J Mol Struct 71:203CrossRefGoogle Scholar
  27. 27.
    Hammond GS (1955). J Am Chem Soc 77:334CrossRefGoogle Scholar
  28. 28.
    Kalasinsky VF, Anjaria HV, Little TS (1982). J Phys Chem 86:1351CrossRefGoogle Scholar
  29. 29.
    Nielsen JR, Richards CM, McMurry HL (1948). J Chem Phys 16:67CrossRefGoogle Scholar
  30. 30.
    DeMore WB, Sander SP, Golden DM, Hampson RF, Kurylo MJ, Howard CJ, Ravishankara AR, Kolb CE, Molina MJ (1997) Chemical kinetics and photochemical data for use in stratospheric modelling, JPL Publ. 97–4Google Scholar
  31. 31.
    Lazarou YG (1999). Papagiannakopoulos P Chem Phys Lett 301:19CrossRefGoogle Scholar
  32. 32.
    Lide DR (1999). CRC Handbook of chemistry and physics, 80th ed., CRC, New YorkGoogle Scholar
  33. 33.
    Ruscic B, Wagner AF, Harding LB, Asher RL, Feller D, Dixon DA, Peterson DA, Song Y, Qian X, Ng CY, Liu JB, Chen WW, Schwenke DW (2002). J Phys Chem A 106:2727CrossRefGoogle Scholar
  34. 34.
    Taghikhani M, Parsafar GA (2005). J Phys Chem A 109:8518CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational ChemistryJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations