Advertisement

Theoretical Chemistry Accounts

, Volume 118, Issue 2, pp 295–303 | Cite as

A barrier-free molecular radical-molecule reaction: \({^{3}C_{2} (a^{3}\Pi) {+} O_{2} (X^{3} \Sigma)}\)

  • Ming-Hui Zuo
  • Ji-Lai Li
  • Xu-Ri HuangEmail author
  • Hui-Ling Liu
  • Cai-Yun Geng
  • Fei Li
  • Chia-Chung Sun
Regular Article

Abstract

The reaction of 3C2 (a3Π) radical with O2 (X3Σ) molecule has been studied theoretically using ab initio Quantum Chemistry method. Both singlet and triplet potential energy surfaces (PES) are calculated at the CCSD(T)/aug-cc-pVDZ//B3LYP/6-311+G(d) + ZPE and G3B3 levels of theory. On the singlet PES of the title reaction, it is shown that the most feasible pathway should be the O-atom of O2 attacking the C-atom of the  3C2 molecule first to form the adduct 1 CCOO, followed by the O-shift to give intermediate 2 CC(OO), and then to the major products P1 (2CO). Alternatively, 1 can be directly dissociated to P1 via transition state TS1-P1. The other reaction pathways are less competitive due to thermodynamical or kinetic factors. On the other hand, the pathways on the triplet PES are less competitive than those on the singlet PES in low temperature range, whereas it is not the case in high temperature ranges. On the basis of the analysis of the kinetics of all pathways through which the reactions proceed, we expect that the competitive power of reaction pathways may vary with experimental conditions for the title reaction. The reaction heats of formation calculated are in good agreement with that obtained experimentally.

Keywords

Potential energy surface Reaction mechanism C2 radical Barrier-free Radical-molecule reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gaydon AG, Wolfhard HG (1979) Flames, their structure, radiation, and temperature. Chapman & Hall, New YorkGoogle Scholar
  2. 2.
    O’Brien SC, Heath JR, Curl RF, Smalley RE (1988). J Chem Phys 88:220CrossRefGoogle Scholar
  3. 3.
    Perry MD, Raff LM (1994). J Phys Chem 98:4375CrossRefGoogle Scholar
  4. 4.
    Weltner JW, Van Zee R (1989). Chem Rev 89:1713CrossRefGoogle Scholar
  5. 5.
    Kaiser RI (2002). Chem Rev 102:1309CrossRefGoogle Scholar
  6. 6.
    Cecchi-Pestellini C, Dalgarno A (2002). Mon Not R Astron Soc 331:L31CrossRefGoogle Scholar
  7. 7.
    Oka T, Thorburn JA, McCall BJ, Friedman SD, Hobbs LM, Sonnentrucker P, Welty DE, York DG (2003). Astrophys J 582:823CrossRefGoogle Scholar
  8. 8.
    Bakker EJ, van-Dishoeck EF, Waters LBFM, Schoenmaker T (1997). Astron Astrophys 323:469Google Scholar
  9. 9.
    A’Hearn MF, Millis RC, Schleicher DO, Osip DJ, Birch PV (1995). Icarus 118:223CrossRefGoogle Scholar
  10. 10.
    Baronavski AP, McDonald JR (1997). J Chem Phys 66:3300CrossRefGoogle Scholar
  11. 11.
    Rennick CJ, Smith JA, Ashfold MNR, Orr-Ewing A (2004). J Chem Phys Lett 383:518CrossRefGoogle Scholar
  12. 12.
    Gordillo-Vazquez FJ, Albella JM (2003). J Appl Phys 94:6085CrossRefGoogle Scholar
  13. 13.
    McKellar A, Astron JR (1960). Soc Can 54:97Google Scholar
  14. 14.
    Brault JW, Delbouille L, Grevesse N, Roland G, Sauval AJ, Testerman L (1982). Astron Astrophys 108:201Google Scholar
  15. 15.
    Rabeau JR, John P, Wilson JIB (2004). J Appl Phys 96:6724CrossRefGoogle Scholar
  16. 16.
    Páramo A, Canosa A, Le Picard SD, Sims IR (2006). J Phys Chem A 110:3121CrossRefGoogle Scholar
  17. 17.
    Wei ZG, Huang XR, Zhang SW, Sun YB, Qian HJ, Sun CC (2004). J Phys Chem A 108:6771CrossRefGoogle Scholar
  18. 18.
    Wei ZG, Huang XR, Sun YB, Liu JY, Sun CC (2004). J Mol Struct (Theochem). 671:133CrossRefGoogle Scholar
  19. 19.
    Wang JH, Han KL, He GZ, Li ZJ (2003). Chem Phys Lett 368:139CrossRefGoogle Scholar
  20. 20.
    Balucani N, Mebel MA, Lee YT, Kaiser RI (2001). J Phys Chem A 105:9813CrossRefGoogle Scholar
  21. 21.
    Kaiser RI, Le TN, Nguyen TL, Mebel AM, Balucani N, Lee YT, Stahi F (2002). Faraday Discuss 119:51CrossRefGoogle Scholar
  22. 22.
    Ding YH, Li ZS, Huang XR, Sun CC (2000). J Chem Phys 113:1745CrossRefGoogle Scholar
  23. 23.
    Zhang X, Ding YH, Li ZS, Huang XR, Sun CC (2000). Chem Phys Lett 330:577CrossRefGoogle Scholar
  24. 24.
    Kruse T, Roth P (1997). J Chem Phys Lett 101:2138Google Scholar
  25. 25.
    Kaiser RI, Yamada M, Osamura Y (2002). J Phys Chem 106:4825Google Scholar
  26. 26.
    Wang JH, Han KL, He GZ, Li ZJ, Morris VR (2003). J Phys Chem A 107:9825CrossRefGoogle Scholar
  27. 27.
    Wang ZX, Huang MB, Liu RZ (1997). Can J Chem 75:996CrossRefGoogle Scholar
  28. 28.
    Butler JE, Fleming JW, Lin MC (1981). Chem Phys 35:355CrossRefGoogle Scholar
  29. 29.
    Berman MR, Lin MC (1983). Chem Phys 82:435CrossRefGoogle Scholar
  30. 30.
    Faure A, Rist C, Valiron P (1999). Chem Phys 241:29CrossRefGoogle Scholar
  31. 31.
    Carl SA, Elsamra RMI, Kulkarni RM, Nguyen HMT Peeters J (2004). J Phys Chem A 108:3695CrossRefGoogle Scholar
  32. 32.
    Herzberg G (1950) Spectra of diatomic molecules. Van Nostrand, PrincetonGoogle Scholar
  33. 33.
    Huang CS, Zhao DF, Pei LS, Chen CX, Chen Y (2004). Chem Phys Lett 389:230CrossRefGoogle Scholar
  34. 34.
    Reisler H, Mangir M, Wittig C (1980). Chem Phys 47:49CrossRefGoogle Scholar
  35. 35.
    Mangir MS, Reisler H, Wittig C (1980). J Chem Phys 73:829CrossRefGoogle Scholar
  36. 36.
    Filseth SV, Hancock G, Meier K (1979). Chem Phys Lett 61:288CrossRefGoogle Scholar
  37. 37.
    Fontijn A, Fernandez A, Ristanovic A, Randall MY, Jankowiak JT (2001). J Phys Chem A 105:3182CrossRefGoogle Scholar
  38. 38.
    Becke AD (1988). Phys Rev A 38:3098CrossRefGoogle Scholar
  39. 39.
    Becke AD (1993). J Chem Phys 98:1372CrossRefGoogle Scholar
  40. 40.
    Becke AD (1993). J Chem Phys 98:5648CrossRefGoogle Scholar
  41. 41.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003). Revision B.03, Gaussian, Inc., PittsburghGoogle Scholar
  42. 42.
    Tran KM, McAnoy AM, Bowie JH (2004). Org Biomol Chem 2:999CrossRefGoogle Scholar
  43. 43.
    Gonzalez C, Schlegel HB (1990). J Phys Chem 94:5523CrossRefGoogle Scholar
  44. 44.
    Baboul AG, Curtiss LA, Redfern PC (1999). J Chem Phys 110:7650CrossRefGoogle Scholar
  45. 45.
    Purvis GD, Bartlett RJ (1982). J Chem Phys 76:1910CrossRefGoogle Scholar
  46. 46.
    Woon DE, Dunning TH Jr (1993). J Chem Phys 98:1358CrossRefGoogle Scholar
  47. 47.
    Shackleford WL, Mastrup FN, Kreye WC (1972). J Chem Phys 57:3933CrossRefGoogle Scholar
  48. 48.
    Li JL, Huang XR, Bai HT, Geng CY, Yu GT, Sun CC (2005). J Mol Struct (Theochem) 730:205CrossRefGoogle Scholar
  49. 49.
    Schröder D, Heinemann C, Schwarz H, Harvey JN, Dua S, Blanksby SJ, Bowie JH (1998). Chem Eur J 4:2050CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Ming-Hui Zuo
    • 1
  • Ji-Lai Li
    • 1
  • Xu-Ri Huang
    • 1
    Email author
  • Hui-Ling Liu
    • 1
  • Cai-Yun Geng
    • 1
  • Fei Li
    • 1
  • Chia-Chung Sun
    • 1
  1. 1.State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical ChemistryJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations