Advertisement

Theoretical Chemistry Accounts

, Volume 118, Issue 2, pp 281–293 | Cite as

Calculation of acidic dissociation constants in water: solvation free energy terms. Their accuracy and impact

  • Nina Sadlej-SosnowskaEmail author
Regular Article

Abstract

Three polarizable continuum models, DPCM, CPCM, and IEFPCM, have been applied to calculate free energy differences for nine neutral compounds and their anions. On the basis of solvation free energies, the pKa values were obtained for the compounds in question by using three thermodynamic cycles: one, involving the combined experimental and calculated data, as well as two other cycles solely with calculated data. This paper deals with the influence of factors such as the SCRF model applied, choice of a particular thermodynamic cycle, atomic radii used to build a cavity in the solvent (water), optimization of geometry in water, inclusion of electron correlation, and the dimension of the basis set on the solvation free energies and on the calculated pKa values.

Keywords

Solvation free energy Acidity pKa Polarizable continuum model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

References

  1. 1.
    Kelly CP, Cramer CJ, Truhlar DG (2006). Phys Chem A 110:2493CrossRefGoogle Scholar
  2. 2.
    Chipman DM (2002). J Phys Chem A 106:7413CrossRefGoogle Scholar
  3. 3.
    Schüürmann G, Cossi M, Barone V, Tomasi J (1998). J Phys Chem A 102:6706CrossRefGoogle Scholar
  4. 4.
    Gao D, Svoronos P, Wong PK, Maddalena D, Hwang J, Walker H (2005). J Phys Chem A 109:10776CrossRefGoogle Scholar
  5. 5.
    Liptak MD, Shields GC (2001). Int J Quantum Chem 85:727CrossRefGoogle Scholar
  6. 6.
    De Abreu HA, De Almeida WB, Duarte HA. (2004). Chem Phys Lett 383:47CrossRefGoogle Scholar
  7. 7.
    Klamt A, Eckert F, Diedenhofen M, Beck ME (2003). J Phys Chem A 107:9380CrossRefGoogle Scholar
  8. 8.
    da Silva CO, da Silva EC, Nascimento MAC (1999). J Phys Chem A 103:11194CrossRefGoogle Scholar
  9. 9.
    da Silva CO, da Silva EC, Nascimento MAC (2000). J Phys Chem A 104:2402CrossRefGoogle Scholar
  10. 10.
    Topol IA, Tawa GJ, Burt SK, Rashin AA (1997). J Phys Chem A 101:10075CrossRefGoogle Scholar
  11. 11.
    Lee I, Kim CK, Han IS, Lee HW, Kim WK, Kim JB (1999). J Phys Chem B 103:7302CrossRefGoogle Scholar
  12. 12.
    Lim C, Bashford D, Karplus M (1991). J Phys Chem 95: 5610CrossRefGoogle Scholar
  13. 13.
    Liptak MD, Shields GC (2001). J Am Chem Soc 123:7314CrossRefGoogle Scholar
  14. 14.
    Liptak MD, Gross KC, Seybold PG, Feldgus S, Shields GC (2002). J Am Chem Soc 124:6421CrossRefGoogle Scholar
  15. 15.
    Jang YH, Sowers LC, Çağin T, Goddard WA III (2001). J Phys Chem A 105:274CrossRefGoogle Scholar
  16. 16.
    Klicić JJ, Friesner RA, Liu S-Y, Guida WC (2002). J Phys Chem A 106:1327CrossRefGoogle Scholar
  17. 17.
    Murłowska K, Sadlej-Sosnowska N (2005). J Phys Chem A 109:5590CrossRefGoogle Scholar
  18. 18.
    Satchell JF, Smith BJ (2002). Phys Chem Chem Phys 4:4314CrossRefGoogle Scholar
  19. 19.
    Jang YH, Goddard WA III, Noyes KT, Sowers LC, Hwang S, Chung DS (2003). J Phys Chem B 107:344CrossRefGoogle Scholar
  20. 20.
    Chen IJ, MacKerell AD Jr (2000). Theor Chem Acc 103:483Google Scholar
  21. 21.
    Tuñón I, Silla E, Tomasi J (1992). J Phys Chem 96:9043CrossRefGoogle Scholar
  22. 22.
    Kallies B, Mitzner R (1997). J Phys Chem B 101:2957CrossRefGoogle Scholar
  23. 23.
    Pliego JR Jr (2003). Chem Phys Lett 367:145CrossRefGoogle Scholar
  24. 24.
    Pliego JR Jr, Riveros JM (2002). J Phys Chem A 106:7434CrossRefGoogle Scholar
  25. 25.
    Takano Y, Houk KN (2005). J Chem Theory Comput 1:70CrossRefGoogle Scholar
  26. 26.
    Cao Z, Lin M, Zhang Q, Mo Y (2004). J Phys Chem A 108:4277CrossRefGoogle Scholar
  27. 27.
    Popovic DM, Quenneville J, Stuchebrukhov AA (2005). J Phys Chem B 109:3616CrossRefGoogle Scholar
  28. 28.
    Jensen JH, Li H, Robertson AD, Molina PA (2005). J Phys Chem A 109:6634CrossRefGoogle Scholar
  29. 29.
    Namazian M, Heidary H (2003). J Mol Struct (Theochem) 620:257CrossRefGoogle Scholar
  30. 30.
    Cramer CJ (2003). Essentials of computational chemistry. Wiley, EnglandGoogle Scholar
  31. 31.
    Pearson RG (1986). J Am Chem Soc 108:6109CrossRefGoogle Scholar
  32. 32.
    Pliego JR Jr, Riveros JM (2002). Phys Chem Chem Phys 4:1622CrossRefGoogle Scholar
  33. 33.
    Pliego JR Jr, Riveros JM (2000). Chem Phys Lett 332:597CrossRefGoogle Scholar
  34. 34.
    Kelly CP, Cramer CJ, Truhlar DG (2005). J Chem Theory Comput 1:1133CrossRefGoogle Scholar
  35. 35.
    Kelly CP, Cramer CJ, Truhlar DG (2006). J Phys Chem B 110:16066CrossRefGoogle Scholar
  36. 36.
    Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (1999). J Chem Phys 110:2822CrossRefGoogle Scholar
  37. 37.
    Ochterski JW, Petersson GA, Montgomery JA (1996). J Chem Phys 104:2598CrossRefGoogle Scholar
  38. 38.
    Ben-Naim A, Marcus Y (1984). J Chem Phys 81:2016CrossRefGoogle Scholar
  39. 39.
    Tissandier MD, Cowen KA, Feng WY, Gundlach E, Cohen MH, Earhart AD, Coe JV, Tuttle TR (1998). J Phys Chem A 102:7787CrossRefGoogle Scholar
  40. 40.
    Tuttle TR, Malaxos S, Coe JV (2002). J Phys Chem A 106:925CrossRefGoogle Scholar
  41. 41.
    Camaioni DM, Schwerdtfeger CA (2005). J Phys Chem A 109:10795CrossRefGoogle Scholar
  42. 42.
    Bartels DM, Takahashi K, Cline JA, Marin TW, Jonah CD (2005). J Phys Chem A 109:1299CrossRefGoogle Scholar
  43. 43.
    Foresman JB, Frisch Æ (1996). Exploring chemistry with electronic structure methods. Gaussian Inc., PittsburghGoogle Scholar
  44. 44.
    Frisch Æ, Frisch MJ (1999). Gaussian 98 user’s reference, 2nd Edn. Gaussian Inc., PittsburghGoogle Scholar
  45. 45.
    Frisch Æ, Frisch MJ, Trucks GW (2003). Gaussian 03 user’s reference. Gaussian Inc., CarnegieGoogle Scholar
  46. 46.
    Miertuš S, Scrocco E, Tomasi J (1981). J Chem Phys 55:117CrossRefGoogle Scholar
  47. 47.
    Cossi M, Barone V, Cammi R, Tomasi J (1996). Chem Phys Lett 255:327CrossRefGoogle Scholar
  48. 48.
    Barone V, Cossi M (1998). J Phys Chem 102:1995Google Scholar
  49. 49.
    Mennucci B, Cancès E, Tomasi J (1997). J Phys Chem B 101:10506CrossRefGoogle Scholar
  50. 50.
    Cancès E, Mennucci B, Tomasi J (1997). J Chem Phys 107:3032CrossRefGoogle Scholar
  51. 51.
    Tomasi J, Mennucci B, Cammi R (2005). Chem Rev 105:2999CrossRefGoogle Scholar
  52. 52.
    Cramer CJ, Truhlar DG (1999). Chem Rev 99:2161CrossRefGoogle Scholar
  53. 53.
    Orozco M, Luque FJ (2000). Chem Rev 100:4187CrossRefGoogle Scholar
  54. 54.
    Luque FJ, Curutchet C, Muñoz-Muriedas J, Bidon-Chanal A, Soteras I, Morreale A, Gelpi JL, Orozco M (2003). Phys Chem Chem Phys 5:3827CrossRefGoogle Scholar
  55. 55.
    Barone V, Cossi M, Tomasi J (1997). J Chem Phys 107:3210CrossRefGoogle Scholar
  56. 56.
    Rappé AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992). J Am Chem Soc 114:10024CrossRefGoogle Scholar
  57. 57.
    NIST Chemistry Webbook. NIST Standard Reference Database Number 69, June 2005 Release. (http://webbook.nist.gov)Google Scholar
  58. 58.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzales C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (1999) Gaussian 98, revision A.11.4. Gaussian, PittsburghGoogle Scholar
  59. 59.
    Klamt A, Jonas V (1996). J Chem Phys 105:9972CrossRefGoogle Scholar
  60. 60.
    Frisch M J, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, NakajimaT, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision B.04 Gaussian, PittsburghGoogle Scholar
  61. 61.
    Cossi M, Scalmani G, Rega N, Barone V (2002). J Chem Phys 117:43CrossRefGoogle Scholar
  62. 62.
    Pliego JR Jr, Riveros JM (2001). J Phys Chem A 105:7241CrossRefGoogle Scholar
  63. 63.
    Asthagiri D, Pratt LR, Asbaugh HS (2003). J Chem Phys 119:2702CrossRefGoogle Scholar
  64. 64.
    Adam KR (2002). J Phys Chem A 106:11963CrossRefGoogle Scholar
  65. 65.
    Zhan C-G, Dixon DA (2001). J Phys Chem A 105:11534CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.National Institute of Public HealthWarsawPoland

Personalised recommendations