Skip to main content
Log in

Stochastic modelling of roto-translational motion of dyes in micellar environment

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Time decay of the fluorescence anisotropy ratio due to diffusion of dyes in micelles is usually interpreted by decoupling the reorientational dynamics of the molecule with respect to the local director from the translational diffusion of the dye. However, while such a kind of assumption is justified in other contexts (like for reorientations of a small mobile fragment in a macromolecule, decoupled from the motion of the macromolecule as a whole, as invoked in the well-known model by Lipari and Szabo), here it is not based on physical grounds. In this work we develop the stochastic model for the full description of the roto-translational dynamics of a dye in the micellar environment, by employing the Fokker–Planck–Smoluchowski equation for the positional and orientational variables. Then we simplify the model to the situation of strong confinement of the molecule at the micelle interface. Finally, by employing a time-scale separation between fast reorientational dynamics and slow lateral diffusion of the dye (which holds if the micelle radius is much larger than the size of the dye), and by resorting to a model like the “wobbling in a cone”, we show that a bi-exponential form can be obtained for the fluorescence anisotropy ratio, but with the remarkable difference that the fast-relaxing component is not affected by the slow motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Quitevis EL, Marcus AH, Fayer MD (1993). J Phys Chem 97:5762

    Article  CAS  Google Scholar 

  2. Maiti NC, Krishna MMG, Britto PJ, Periasamy N (1997). J Phys Chem B 101:11051

    Article  CAS  Google Scholar 

  3. Dutt GB (2004). J Phys Chem B 108:3651

    Article  CAS  Google Scholar 

  4. Chakraborty A, Seth D, Setua P, Sarkar N (2006). J Chem Phys 124:074512

    Article  CAS  Google Scholar 

  5. Kinoshita K, Kawato S, Ikegami A (1977). Biophys J 20:289

    Google Scholar 

  6. Lipari G, Szabo A (1980). Biophys J 30:489

    Article  CAS  Google Scholar 

  7. Lipari G, Szabo A (1982). J Am Chem Soc 104:4546

    Article  CAS  Google Scholar 

  8. Gardiner CW (1994) Handbook of Stochastic Methods. Springer, Berlin Heidelberg New York

    Google Scholar 

  9. Nordio PL, Busolin P (1971). J Chem Phys 55:5485

    Article  CAS  Google Scholar 

  10. Nordio PL, Rigatti G, Segre U (1972). J Chem Phys 56:2117

    Article  CAS  Google Scholar 

  11. Nordio PL, Rigatti G, Segre U (1973). Mol Phys 25:129

    Article  CAS  Google Scholar 

  12. Moro G, Nordio PL, Segre U (1984). Chem Phys Lett 105:440

    Article  CAS  Google Scholar 

  13. Moro G, Nordio PL (1985). J Phys Chem 89:997

    Article  CAS  Google Scholar 

  14. Ferrarini A, Nordio PL, Moro GJ (1994) In: Luckhurst GR, Veracini CA (eds). The molecular physics of liquid cristals. Kluwer Academic, Dordrecht, pp 41–69

  15. Frezzato D, Moro GJ, Zannoni C (2005). J Chem Phys 122:164904

    Article  CAS  Google Scholar 

  16. Ferrarini A, Moro G, Nordio PL (1988). Mol Phys 63:225

    Article  CAS  Google Scholar 

  17. Ferrarini A, Moro G, Nordio PL, Polimeno A (1988). Chem Phys Lett 151:531

    Article  CAS  Google Scholar 

  18. Ferrarini A, Nordio PL, Moro GJ, Creapeau RH, Freed JH (1989). J Chem Phys 91:5707

    Article  CAS  Google Scholar 

  19. Moro GJ, Ferrarini A, Polimeno A, Nordio PL (1989). In: Dorfmuller T (ed). Reactive and flexible molecules in liquids. Kluwer, Dordrecht, pp 107–139

  20. Ferrarini A, Moro GJ, Nordio PL (1990). Liq Cryst 8:593

    CAS  Google Scholar 

  21. Moro GJ (1991). J Chem Phys 94:8577

    Article  CAS  Google Scholar 

  22. Moro GJ (1992). J Chem Phys 97:5749

    Article  CAS  Google Scholar 

  23. Ferrarini A, Nordio PL (1992). J Chem Soc Faraday Trans 1733:1746

    Google Scholar 

  24. Moro GJ (1996). J Phys Chem 100:16419

    Article  CAS  Google Scholar 

  25. Nigro B, Moro GJ (2002). J Phys Chem B 106:7365

    Article  CAS  Google Scholar 

  26. Nigro B, Di Stefano S, Rassu A, Moro GJ (2004). J Chem Phys 121:4364

    Article  CAS  Google Scholar 

  27. Stocchero M, Ferrarini A, Moro GJ, Dunmur DA, Luckhurst GR (2004). J Chem Phys 121:8079

    Article  CAS  Google Scholar 

  28. Moro G, Nordio PL (1985). Mol Phys 56:255

    Article  CAS  Google Scholar 

  29. Moro G, Nordio PL (1986). Mol Phys 57:947

    Article  Google Scholar 

  30. Polimeno A, Nordio PL, Moro G (1988). Chem Phys Lett 144:357

    Article  Google Scholar 

  31. Moro GJ, Polimeno A (1989). Chem Phys 131:281

    Article  CAS  Google Scholar 

  32. Moro GJ, Nordio PL, Polimeno A (1992). Chem Phys Lett 182:575

    Article  Google Scholar 

  33. Moro GJ, Polimeno A (1992). Chem Phys Lett 189:133

    Article  CAS  Google Scholar 

  34. Moro GJ (1995). J Chem Phys 103:7514

    Article  CAS  Google Scholar 

  35. Moro GJ, Cardin F (1997). Phys Rev E 55:4918

    Article  CAS  Google Scholar 

  36. Moro GJ, Severin MG (2001). J Chem Phys 114:4565

    Article  CAS  Google Scholar 

  37. Giacometti G, Moro GJ, Nordio PL, Polimeno A (1989). J Mol Liq 42:19

    Article  CAS  Google Scholar 

  38. Moro GJ, Nordio PL, Polimeno A (1989). Mol Phys 68:1131

    Article  CAS  Google Scholar 

  39. Nordio PL, Polimeno A (1992). Mol Phys 75:1203

    Article  CAS  Google Scholar 

  40. Nordio PL, Polimeno A, Barbon A (1993). Polish J Chem 67:1397

    CAS  Google Scholar 

  41. Polimeno A, Barbon A, Nordio PL (1994). J Phys Chem 98:12158

    Article  CAS  Google Scholar 

  42. Nordio PL, Polimeno A (1996). Mol Phys 88:315

    Article  CAS  Google Scholar 

  43. Braun A, Nordio PL, Polimeno A, Saielli G (1996). Chem Phys 208:127

    Article  CAS  Google Scholar 

  44. Saielli G, Braun D, Polimeno A, Nordio PL (1996). Chem Phys Lett 257:381

    Article  CAS  Google Scholar 

  45. Moro GJ, Nordio PL, Noro M, Polimeno A (1994). J Chem Phys 101:693

    Article  CAS  Google Scholar 

  46. Polimeno A, Moro GJ (1994). J Chem Phys 101:703

    Article  CAS  Google Scholar 

  47. Polimeno A, Moro GJ, Freed JH (1995). J Chem Phys 102:8094

    Article  CAS  Google Scholar 

  48. Moro GJ, Polimeno A (1997). J Chem Phys 107:7884

    Article  CAS  Google Scholar 

  49. Polimeno A, Frezzato D, Saielli G, Moro GJ, Nordio PL (1998). Acta Phys Polonica B 29:1749

    CAS  Google Scholar 

  50. Moro GJ, Polimeno A (2004). J Phys Chem B 108:9530

    Article  CAS  Google Scholar 

  51. Magro A, Frezzato D, Polimeno A, Moro GJ, Chelli R, Righini R (2005). J Chem Phys 123:124511

    Article  CAS  Google Scholar 

  52. Frezzato D, Kothe G, Moro GJ (2001). J Phys Chem B 105:1281

    Article  CAS  Google Scholar 

  53. Althoff G, Frezzato D, Vilfan M, Stauch O, Schubert R, Vilfan I, Moro GJ, Kothe G (2002). J Phys Chem B 21:5506

    Article  CAS  Google Scholar 

  54. Frezzato D, Moro GJ, Tittelbach M, Kothe G (2003). J Chem Phys 119:4060

    Article  CAS  Google Scholar 

  55. Frezzato D, Moro GJ, Kothe G (2003). J Chem Phys 119:6931

    Article  CAS  Google Scholar 

  56. Frezzato D, Kothe G, Moro GJ (2004). J Phys Chem B 108:9505

    Article  CAS  Google Scholar 

  57. Moro G, Freed JH (1980). J Phys Chem 74:3757

    Google Scholar 

  58. Moro G, Freed JH (1981). J Phys Chem 75:3157

    Article  CAS  Google Scholar 

  59. Moro G (1986). Chem Phys 106:89

    Article  CAS  Google Scholar 

  60. Moro G, Freed JH (1986). In: Cullum J, Willoughby RA (1986) Large scale eigenvalue problems. North-Holland, Amsterdam, pp 143–160

  61. Moro G, Nordio PL (1983). Chem Phys Lett 96:192

    Article  CAS  Google Scholar 

  62. Rose ME (1957) Elementary Theory of Angular Momentum. Wyley, New York

    Google Scholar 

  63. Polimeno A, Moro GJ, Freed JH (1996). J Chem Phys 104:1090

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio J. Moro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frezzato, D., Polimeno, A., Ferrarini, A. et al. Stochastic modelling of roto-translational motion of dyes in micellar environment. Theor Chem Account 117, 1017–1027 (2007). https://doi.org/10.1007/s00214-006-0228-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-006-0228-8

Keywords

Navigation