Skip to main content
Log in

Excited state dynamics with the direct trajectory surface hopping method: azobenzene and its derivatives as a case study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We review the recent studies of the photoisomerization dynamics of azobenzene and its derivatives by surface hopping simulations based on semiempirical potential energy surfaces. We examine the ability of semiclassical methods to predict the excited state dynamics and to reproduce transient spectroscopic signals that constitute the most direct experimental evidence in this field. We show that the available simulation methods yield a deep insight into the mechanism of photochemical reactions and excited state decay, and a fairly good quantitative agreement with experimental findings. Probably the most important technical improvements we can envisage concern the surface hopping algorithm and the usage of ab initio data in the simulation of transient spectra. Concerning azobenzene, our results show that the isomerization mechanism is torsion of the N=N double bond, both by n → π* and by π → π* excitation. The influence of the solvent and the findings of some recent femtochemistry experiments deserve further work to be fully interpreted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ciminelli C, Granucci G, Persico M (2004). Chem Eur J 10:2327

    Article  CAS  Google Scholar 

  2. Toniolo A, Ciminelli C, Persico M, Martínez TJ (2005). J Chem Phys 123:234308

    Article  CAS  Google Scholar 

  3. Ciminelli C, Granucci G, Persico M (2005). J Chem Phys 123:174317

    Article  CAS  Google Scholar 

  4. Ciminelli C, Granucci G, Persico M in preparation

  5. Toniolo A, Thompson AL, Martínez TJ (2004). Chem Phys 304:133

    Article  CAS  Google Scholar 

  6. Barbatti M, Granucci G, Persico M, Lischka H (2005). Chem Phys Lett 401:276

    Article  CAS  Google Scholar 

  7. Cacelli I, Evangelista F, Granucci G, Persico M, unpublished results

  8. Rau H, Lüddecke E (1982). J Am Chem Soc 104:1616

    Article  CAS  Google Scholar 

  9. Rau H (1984). J Photochem 26:221

    Article  CAS  Google Scholar 

  10. Rau H, Yu-Quan S (1988). J Photochem Photobiol A 42:321

    Article  CAS  Google Scholar 

  11. Rau H (1990) In: Durr H, Bouas-Laurent H, (eds) Photochromism. Molecules and systems Elsevier, Amsterdam, Chapt. 4, p 165

  12. Horspool W (2000) In: Patai S (ed), The Chemistry of the hydrazo, azo and azoxy groups, vol 2, Wiley, New York

  13. Diau EW-G (2004). J Phys Chem A 108:950

    Article  CAS  Google Scholar 

  14. Chang C-W, Lu Y-C, Wang T-T, Diau EW-G (2004). J Am Chem Soc 126:10109

    Article  CAS  Google Scholar 

  15. Schultz T, Quenneville J, Levine B, Toniolo A, Martínez TJ, Lochbrunner S, Schmitt M, Schaffer JP, Zgierski MZ, Stolow A (2003). J Am Chem Soc.125:8098

    Article  CAS  Google Scholar 

  16. Tamai N, Miyasaka H (2000). Chem Rev 100:1875

    Article  CAS  Google Scholar 

  17. Lednev IK, Ye T-Q, Hester RE, Moore JN (1996). J Phys Chem 100:13338

    Article  CAS  Google Scholar 

  18. Lednev IK, Ye T-Q, Matousek P, Towrie M, Foggi P, Neuwahl FVR, Umapathy S, Hester RE, Moore JN (1998). Chem Phys Lett 290:68

    Article  CAS  Google Scholar 

  19. Nägele T, Hoche R, Zinth W, Wachtveitl J (1997). Chem Phys Lett 272:489

    Article  Google Scholar 

  20. Hamm P, Ohline SM, Zinth W (1997). J Chem Phys 106:519

    Article  CAS  Google Scholar 

  21. Terazima M, Takezaki M, Yamaguchi S, Hirota N (1998). J Chem Phys 109:603

    Article  CAS  Google Scholar 

  22. Fujino T, Tahara T (2000). J Phys Chem A 104:4203

    Article  CAS  Google Scholar 

  23. Fujino T, Arzhantsev SYu, Tahara T (2001). J Phys Chem A 105:8123

    Article  CAS  Google Scholar 

  24. Lu Y-C, Chang C-W, Diau EW-G (2002). J Chin Chem Soc 49:693

    CAS  Google Scholar 

  25. Satzger H, Spörlein S, Root C, Wachtveitl J, Zinth W, Gilch P (2003). Chem Phys Lett 372:216

    Article  CAS  Google Scholar 

  26. Satzger H, Root C, Braun M (2004). J Phys Chem A 108:6265

    Article  CAS  Google Scholar 

  27. Zimmermann G, Chow L-Y, Paik U-J (1958). J Am Chem Soc 80:3528

    Article  Google Scholar 

  28. Gegiou D, Muszkat KA, Fischer E (1968). J Am Chem Soc 90:12

    Article  CAS  Google Scholar 

  29. Ronayette J, Arnaud R, Lebourgeois P, Lemaire J (1974). Can J Chem 52:1848

    Article  CAS  Google Scholar 

  30. Bortolus P, Monti S (1979). J Phys Chem 83:648

    Article  CAS  Google Scholar 

  31. Gauglitz G, Hubig S (1985). J Photochem 30:121

    Article  CAS  Google Scholar 

  32. Siampiringue N, Guyot G, Monti S, Bortolus P (1987). J Photochem 37:185

    Article  CAS  Google Scholar 

  33. Jungwirth P, Gerber RB (1999). Chem Rev 99:1583

    Article  CAS  Google Scholar 

  34. Beck MH, Jäckle A, Worth GA, Meyer H-D (2000). Phys Rep 324:1

    Article  CAS  Google Scholar 

  35. Meyer H-D, Worth GA (2003). Theor Chem Acc 109:251

    Article  CAS  Google Scholar 

  36. Markmann A, Worth GA, Mahapatra S, Meyer H-D, Köppel H, Cederbaum LS (2005). J Chem Phys 123:204310

    Article  CAS  Google Scholar 

  37. Tully JC (1998). Faraday Discuss 110:407

    Article  CAS  Google Scholar 

  38. Topaler MS, Allison TC, Schwenke DW, Truhlar DG (1998). J Chem Phys 109:3321

    Article  CAS  Google Scholar 

  39. Drukker K (1999). J Comput Phys 153:225

    Article  CAS  Google Scholar 

  40. Bonačić-Koutecký V, Mitrić R (2005). Chem Rev 105:11

    Article  CAS  Google Scholar 

  41. Heller EJ (1975). J Chem Phys 62:1544

    Article  CAS  Google Scholar 

  42. Ben-Nun M, Quenneville J, Martínez TJ (2000). J Phys Chem A 104:5161

    Article  CAS  Google Scholar 

  43. Toniolo A, Olsen S, Manohar L, Martínez TJ (2004). Faraday Discuss. 127:149

    Article  CAS  Google Scholar 

  44. Pacher T, Cederbaum LS, Köppel H (1993). Adv Chem Phys 84:293

    Article  CAS  Google Scholar 

  45. Persico M (1998) In: Electronic diabatic states: definition, computation and applications. in Encyclopedia of Computational Chemistry; Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer III HF, Schreiner PR (Eds) Wiley, Chichester, p 852

  46. Cattaneo P, Persico M (2000). Theoret Chem Acc 103:390

    CAS  Google Scholar 

  47. Cattaneo P, Persico M (2001). J Am Chem Soc 123:7638

    Article  CAS  Google Scholar 

  48. Vreven T, Bernardi F, Garavelli M, Olivucci M, Robb MA, Schlegel HB (1997). J Am Chem Soc 119:12687

    Article  CAS  Google Scholar 

  49. Kaledin AL, Morokuma K (2000). J Chem Phys 113:5750

    Article  CAS  Google Scholar 

  50. Barbatti M, Aquino AJA, Lischka H (2006). Mol Phys 104:1053

    Article  CAS  Google Scholar 

  51. Barbatti M, Granucci G, Lisckha H, Ruckenbauer M (2006) NEWTON-X, Institute of Theoretical Chemistry, University of Vienna

  52. Clifford S, Bearpark MJ, Bernardi F, Olivucci M, Robb MA, Smith BR (1995). J Am Chem Soc 242:27

    Google Scholar 

  53. Granucci G, Toniolo A (2000). Chem Phys Lett 325:79

    Article  CAS  Google Scholar 

  54. Granucci G, Persico M, Toniolo A (2001). J Chem Phys 114:10608

    Article  CAS  Google Scholar 

  55. Patchkovskii S, Thiel W (1997). Theoret Chem Acc 98:1

    CAS  Google Scholar 

  56. Persico M, Granucci G, Inglese S, Laino T, Toniolo A (2003). J Mol Struct Theochem 621:119

    Article  CAS  Google Scholar 

  57. Toniolo A, Ciminelli C, Granucci G, Laino T, Persico M (2004). Theoret Chem Acc 93:270

    Google Scholar 

  58. Case DA, Pearlman DA, Caldwell JW, T.E. Cheatham III Wang J, Ross WS, Simmerling CL, Darden TA, Merz KM, Stanton RV, Cheng AL, Vincent JJ, Crowley M, Tsui V, Gohlke H, Radmer RJ, Duan Y, Pitera J, Massova I, Seibel GL, Singh UC, Weiner PK, Kollman PA (2002) AMBER 7, University of California, San Francisco

  59. Dang LX, Pettitt BM (1987). J Phys Chem 91:3349

    Article  CAS  Google Scholar 

  60. Antes I, Thiel W (1999). J Phys Chem A 103:9290

    Article  CAS  Google Scholar 

  61. Stewart JJP (2002) MOPAC 2000 and MOPAC 2002. Fujitsu Limited, Tokio, Japan

  62. Tully JC (1990). J Chem Phys 93:1061

    Article  CAS  Google Scholar 

  63. Adamson AW, Vogler A, Kunkely H, Wachter R (1978). J Am Chem Soc 100:1298

    Article  CAS  Google Scholar 

  64. Monti S, Orlandi G, Palmieri P (1982). Chem Phys 71:87

    Article  CAS  Google Scholar 

  65. Cattaneo P, Persico M (1999). PCCP 1:4739

    CAS  Google Scholar 

  66. Ishikawa T, Noro T, Shoda T (2001). J Chem Phys 115:7503

    Article  CAS  Google Scholar 

  67. Gagliardi L, Orlandi G, Bernardi F, Cembran A, Garavelli M (2004). Theoret Chem Acc 111:363

    CAS  Google Scholar 

  68. Cembran A, Bernardi F, Garavelli M, Gagliardi L, Orlandi G (2004). J Am Chem Soc 126:3234

    Article  CAS  Google Scholar 

  69. Lu Y-C, Diau EW-G, Rau H (2005). J Phys Chem A 109:2090

    Article  CAS  Google Scholar 

  70. Granucci G, Persico M in preparation

  71. Müller U, Stock G (1997). J Chem Phys 107:6230

    Article  Google Scholar 

  72. Jasper AW, Truhlar DG (2003). Chem Phys Lett 369:60

    Article  CAS  Google Scholar 

  73. Parandekar PV, Tully JC (2005). J Chem Phys 122:094102

    Article  CAS  Google Scholar 

  74. Cusati T, Granucci G, Persico M, Spighi G in preparation

  75. Seideman T (2002). Annu Rev Phys Chem 53:41

    Article  CAS  Google Scholar 

  76. Mitrić R, Bonačić-Koutecký V, Pittner J, Lischka H (2006). J Chem Phys 125:024303

    Article  CAS  Google Scholar 

  77. Suzuki Y, Stener M, Seideman T (2003). J Chem Phys 118:4432

    Article  CAS  Google Scholar 

  78. Vollmer MS, Clark TD, Steinem C, Reza Ghadiri M (1999). Angew Chem Int Ed 38:1598

    Article  CAS  Google Scholar 

  79. Qu W, Tan H, Chen G, Liu R (2003). Phys Chem Chem Phys 5:2327

    Article  CAS  Google Scholar 

  80. Yager KG, Barrett CJ (2006). J Photochem Photobiol A 182:250

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Persico.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granucci, G., Persico, M. Excited state dynamics with the direct trajectory surface hopping method: azobenzene and its derivatives as a case study. Theor Chem Account 117, 1131–1143 (2007). https://doi.org/10.1007/s00214-006-0222-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-006-0222-1

Keywords

Navigation