Skip to main content
Log in

A quantum mechanical polarizable continuum model for the calculation of resonance Raman spectra in condensed phase

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this paper we present two computational strategies to simulate resonance Raman spectra of solvated molecules within the framework of the polarizable continuum model (PCM). These two strategies refer to two different theoretical approaches to the RR spectra, namely the transform theory and the short-time dynamics. The first is based on the explicit detemination of the mimimum geometries of ground and electronically excited states, whereas the second only needs to know the Franck–Condon region of the excited state potential energy surface. In both strategies we have applied the recent advances achieved in the QM description of excited state properties and geometries of solvated molecules. In particular, linear response approaches such as CIS and TDDFT, and their extensions to analytical gradients, are here used to evaluate the quantities required to simulate resonance Raman spectra. The methods have been applied to the study of solvent effects on RRS of julolidine malononitrile (JM). The good agreement found between the calculated and experimental RR spectra seems to confirm the reliability of the computational strategies based on the PCM description.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Myers AB (1996). Chem Rev 96:911

    Article  CAS  Google Scholar 

  2. Miertus S, Scrocco E, Tomasi J (1981). Chem Phys 55:117

    Article  CAS  Google Scholar 

  3. Cammi R, Tomasi J (1995). Comput Chem 16:1449

    Article  CAS  Google Scholar 

  4. Cancès E, Mennucci B, Tomasi J (1997). J Chem Phys 107:3032

    Article  Google Scholar 

  5. Mennucci B, Cancès E, Tomasi J (1997). J Phys Chem B 101:10506

    Article  CAS  Google Scholar 

  6. Tomasi J, Mennucci B, Cammi R (2005). Chem Rev 105:2999

    Article  CAS  Google Scholar 

  7. Mennucci B (2006). Theor Chem Acc 116:31

    Article  CAS  Google Scholar 

  8. Cammi R, Corni S, Mennucci B, Tomasi J (2005). J Chem Phys 122:104513

    Article  CAS  Google Scholar 

  9. Corni S, Cammi R, Mennucci B, Tomasi J (2005). J Chem Phys 123:134512

    Article  CAS  Google Scholar 

  10. Caricato M, Mennucci B, Tomasi J, Ingrosso F, Cammi R, Corni S, Scalmani G (2006). J Chem Phys 124:124520

    Article  CAS  Google Scholar 

  11. Cammi R, Mennucci B, Tomasi J. (2000). J Phys Chem A 104:5631

    Article  CAS  Google Scholar 

  12. Scalmani G, Frisch M, Mennucci B, Tomasi J, Cammi R, Barone V (2006). J Chem Phys 124:094107

    Article  CAS  Google Scholar 

  13. Peticolas WL, Rush T III (1995). J Comput Chem 16:1261

    Article  CAS  Google Scholar 

  14. Lee S-Y, Heller EJ (1979). J Chem Phys 71:4777

    Article  CAS  Google Scholar 

  15. Heller EJ, Sundberg RL, Tannor D (1982). J Phys Chem 86:1822

    Article  CAS  Google Scholar 

  16. Kramers HA, Heisenberg W (1925). Z Phys 31:681

    Article  CAS  Google Scholar 

  17. Dirac PAM (1927). Proc R Soc Lond Ser A 114:710

    Google Scholar 

  18. Blazej DC, Peticolas WL (1980). J Chem Phys 72:3134

    Article  CAS  Google Scholar 

  19. Chan CK Page JBJ (1983). Chem Phys 79:5234

    Article  Google Scholar 

  20. Wilson EB, Decius JC, Cross PC (1955). Molecular vibrations. McGraw-Hill, New York

    Google Scholar 

  21. Li B, Johnson AE, Mukamel S, Myers AB (1994). J Am Chem Soc 116:11039

    Article  CAS  Google Scholar 

  22. Neugebauer J, Hess BA (2004). J Chem Phys 120:11564

    Article  CAS  Google Scholar 

  23. Cammi R, Cappelli C, Corni S, Tomasi J (2000). J Phys Chem A 104:9874

    Article  CAS  Google Scholar 

  24. Cappelli C, Corni S, Tomasi J (2001). J Chem Phys 115:5531

    Article  CAS  Google Scholar 

  25. Tomasi J, Cammi R, Mennucci B, Cappelli C, Corni S (2002). Phys Chem Chem Phys 4:5697

    Article  CAS  Google Scholar 

  26. Aguilar MA, Olivares Del Valle FJ, Tomasi J (1993). J Chem Phys 98:7375

    Article  CAS  Google Scholar 

  27. Cammi R, Tomasi J (1995). Int J Quant Chem Symp 29:465

    Article  CAS  Google Scholar 

  28. Mennucci B, Cammi R, Tomasi J (1998). J Chem Phys 109:2798

    Article  CAS  Google Scholar 

  29. Moran AM, Egolf DS, Blanchard-Desce M, Myers Kelley A (2002). J Chem Phys 116:2542

    Article  CAS  Google Scholar 

  30. Myers Kelley A. (2005). Int J Quantum Chem 104:602

    Article  CAS  Google Scholar 

  31. Moran AM, Myers Kelley A, Tretiak S (2003). Chem Phys Lett 367:293

    Article  CAS  Google Scholar 

  32. Frisch MJ et al (2004). GAUSSIAN, Development Version, Revision D.02, Gaussian, Inc., Wallingford, CT

  33. Tozer DJ, Amos RD, Handy NC, Roos BO, Serrano-Andres L (1999). Mol Phys 97:859

    Article  CAS  Google Scholar 

  34. Dreuw A, Weisman JL, Head-Gordon M (2003). J Chem Phys 119:2943

    Article  CAS  Google Scholar 

  35. Bernasconi L, Sprik M, Hutter J (2003). J Chem Phys 119:12417

    Article  CAS  Google Scholar 

  36. Ikura H, Tsuneda T, Yanai T, Hirao K (2001). J Chem Phys 115:3540

    Article  CAS  Google Scholar 

  37. Yanai T, Tew DP, Handy NC (2004). Chem Phys Lett 393:51

    Article  CAS  Google Scholar 

  38. Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004). J Chem Phys 120:8425

    Article  CAS  Google Scholar 

  39. Chiba M, Tsuneda T, Hirao K (2006). J Chem Phys 124:144106

    Article  CAS  Google Scholar 

  40. Ingrosso F, Mennucci B, Tomasi J (2003). J Mol Liq 108:21

    Article  CAS  Google Scholar 

  41. Caricato M, Ingrosso F, Mennucci B, Tomasi J (2005). J Chem Phys 122:154501

    Article  CAS  Google Scholar 

  42. Jensen L, Zhao LL, Autschbach J, Schatz GC (2005). J Chem Phys 123:174110

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedetta Mennucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mennucci, B., Cappelli, C., Cammi, R. et al. A quantum mechanical polarizable continuum model for the calculation of resonance Raman spectra in condensed phase. Theor Chem Account 117, 1029–1039 (2007). https://doi.org/10.1007/s00214-006-0221-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-006-0221-2

Keywords

Navigation