Skip to main content
Log in

Structure and dynamics of mesogens using intermolecular potentials derived from ab initio calculations

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A method for the calculation of the two-body intermolecular potential which can be applied to large molecules is presented. Each monomer is fragmented in a number of moieties whose interaction energies are used to recover the interaction energy of the whole dimer. For these reasons this strategy has been called fragmentation reconstruction method (FRM). By a judicious choice of the fragmentation scheme it is shown that very accurate interaction energies can be obtained. The sampling of the potential energy surface of a dimer is then used to obtain intermolecular force fields at several levels of complexity, suitable to be employed in bulk phase computer simulations. Applications are presented for benzene and for some mesogenic molecules which constitute the principal interest of the authors. A number of properties ranging from phase stability, thermodynamic quantities, orientational order parameter and collective dynamics properties are computed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crain J, Komolkin A (1999). Adv Chem Phys 109:39

    CAS  Google Scholar 

  2. Atomistic simulation and modeling of smectic liquid crystals in Advances in the Computer Simulations of Liquid Crystals NATO ASI series, edited by P. Pasini and C. Zannoni; Kluwer: Dordrecht, 2000

  3. Wilson M (2005). Int Rev Phys Chem 24:421

    CAS  Google Scholar 

  4. Care C, Cleaver D (2005). Rep Prog Phys 68:2665

    CAS  Google Scholar 

  5. Collings P (1990) Liquid crystals—nature’s delicate phase of matter. Adam Hilger, Bristol

    Google Scholar 

  6. deGennes P, Prost J (1993) The Physics of Liquid Crystals, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  7. Brooks BR, Bruccoeri RE, Olafson BD, States DJ, Swaminanthan S, Karplus M (1983). J Comp Chem 4:187

    CAS  Google Scholar 

  8. Hermans J, Berendsen H, van Gusteren W, Postma J (1984). Biopolymers 23:1

    Google Scholar 

  9. Wiener SJ, Kollmann PA, Nguyen DT, Case DA (1986). J Comp Chem 7:230

    Google Scholar 

  10. Jorgensen W, Severance D (1990). J Am Chem Soc 112:4768

    CAS  Google Scholar 

  11. Car R, Parrinello M (1985). Phys Rev Lett 55:2471

    CAS  Google Scholar 

  12. Marx D, Hutter J (2000) Ab Initio molecular dynamics: theory and implementation in modern methods of quantum chemistry; NIC series, Vol I: Forshungszentrum, Jülich, D.

  13. Amovilli C, Cacelli I, Campanile S, Prampolini G (2002). J Chem Phys 117:3003

    CAS  Google Scholar 

  14. Bizzarri M, Cacelli I, Prampolini G, Tani A (2004). J Phys Chem A 108:10336

    CAS  Google Scholar 

  15. Cacelli I, Cinacchi G, Prampolini G, Tani A Computer simulation of mesogen with ab initio interaction potentials in novel approaches to the Structure and Dynamics of Liquids. Experiments, Theories and Simulation edited by J. Samios and V. Durov; Kluwer: Dordrecht, 2004

  16. Cacelli I, Prampolini G, Tani A (2005). J Phys Chem B 109:3531

    CAS  Google Scholar 

  17. Karlström G, Linse P, Wallqvist A, Jönsson B (1983). J Am Chem Soc 105:3777

    Google Scholar 

  18. Linse P (1984). J Am Chem Soc 106:5425

    CAS  Google Scholar 

  19. Linse P, Engström S, Jönsson B (1985). Chem Phys Lett 115:95

    CAS  Google Scholar 

  20. Corongiu G, Migliore M, Clementi E (1989). J Chem Phys 90:4629

    CAS  Google Scholar 

  21. Millot C, Stone A (1992). Mol Phys 77:439

    CAS  Google Scholar 

  22. Soetens J, Millot C (1995). Chem Phys Lett 235:22

    CAS  Google Scholar 

  23. Liu Y, Kim K, Berne B, Friesner R, Rick S (1998). J Chem Phys 108:4739

    CAS  Google Scholar 

  24. Allen MP, Evans GT, Frenkel D, Mulder B (1993). Adv Chem Phys 86:1

    CAS  Google Scholar 

  25. Zannoni C (2001). J Mater Chem 11:2637

    CAS  Google Scholar 

  26. Cacelli I, Cinacchi G, Geloni C, Prampolini G, Tani A (2003). Mol Cry Liq Cry 395:171

    CAS  Google Scholar 

  27. Fukunaga H, Takimoto J, Aoyagi T, Shoji T, Sawa F, Doi M (2001). Mol Cry Liq Cry 365:1695

    Google Scholar 

  28. Prampolini G (2006). J Chem Theory Comput 2:556

    CAS  Google Scholar 

  29. Cacelli I, Cinacchi G, Prampolini G, Tani A (2004). J Chem Phys 120:3648

    CAS  Google Scholar 

  30. Cacelli I, Cinacchi G, Prampolini G, Tani A (2004). J Am Chem Soc 126:14278

    CAS  Google Scholar 

  31. De Gaetani L, Prampolini G, Tani A (2006). J Phys Chem B 110:2847

    CAS  Google Scholar 

  32. Cacelli I, De Gaetani L, Prampolini G, Tani A Mol Cry Liq Cry (in press)

  33. Cacelli I, De Gaetani L, Prampolini G, Tani A (2007) J Phys Chem B (in press)

  34. Shi X, Bartell L (1988). J Phys Chem 92:5667

    CAS  Google Scholar 

  35. Claessens M, Ferrario M, Ryckaert (1983). J Mol Phys 50:217

    CAS  Google Scholar 

  36. Jaffe RL, Smith GD (1996). J Chem Phys 105:2780

    CAS  Google Scholar 

  37. Hobza P, Selzle HL, Schlag EW (1996). J Phys Chem 100:18790

    CAS  Google Scholar 

  38. Cabaço M, Danten Y, Besnard M, Guissani Y, Guillot B (1997). J Phys Chem B 101:6977

    Google Scholar 

  39. Chelli R, Cardini G, Procacci P, Righini R, Califano S (2000). J Chem Phys 113:6851

    CAS  Google Scholar 

  40. Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K (2002). J Am Chem Soc 124:104

    CAS  Google Scholar 

  41. Witt R, Sturz L, Dölle A, Müller-Plathe F (2000). J Phys Chem A 104:5716

    CAS  Google Scholar 

  42. Picken SJ, VanGunsteren WF, VanDujen PT, DeJeu WH (1989). Liq Cryst 6:357

    CAS  Google Scholar 

  43. Komolkin AV, Laaksonen A, Maliniak A (1994). J Chem Phys 101:4103

    CAS  Google Scholar 

  44. Clark SJ, Adam CJ, Cleaver DJ, Crain J (1997). Liq Cryst 22:477

    CAS  Google Scholar 

  45. Stevensson B, Komolkin A, Sandstrőm D, Maliniak A (2001). J Chem Phys 114:2332

    CAS  Google Scholar 

  46. Adam C, Clark S, Wilson M, Ackland G, Crain J (1998). Mol Phys 93:947

    CAS  Google Scholar 

  47. Zakharov A, Komolkin AV, Maliniak A (1999). Phys Rev E 59:6802

    CAS  Google Scholar 

  48. Zakharov A, Maliniak A (2001). Eur Phys J E 4:435

    CAS  Google Scholar 

  49. Cheung LD, Clark S, Wilson M (2002). Chem Phys Lett 356:140

    CAS  Google Scholar 

  50. Glaser MA (2000) Atomistic simulation and modeling of smectic liquid crystals in Advances in the Computer Simulations of Liquid Crystals NATO ASI series, edited by P. Pasini and C. Zannoni; Kluwer: Dordrecht

  51. Lansac Y, Glaser M, Clark N, Lavrentovich O (1999). Nature 398:54

    CAS  Google Scholar 

  52. Lansac Y, Glaser M, Clark N (2001). Phys Rev E 64:051703

    CAS  Google Scholar 

  53. Emsley J, Luckhurst G, Stockley C (1981). Mol Phys 44:565

    CAS  Google Scholar 

  54. Dvinskikh SV, Furò I (2001). J Chem Phys 115:1946

    CAS  Google Scholar 

  55. Hanemann T, Haase W, Svodoba I, Fuess H (1995). Liq Cryst 19:699

    CAS  Google Scholar 

  56. Adam C, Ferrarini A, Wilson M, Ackland G, Crain J (1999). Mol Phys 97:541

    CAS  Google Scholar 

  57. Sandmann M, Hamann F, Wurflinger A (1997). Z Naturforsh 52:739

    CAS  Google Scholar 

  58. Oweimreen G, Morsy M (2000). Thermochimica Acta 346:37

    CAS  Google Scholar 

  59. Dong R (1998). Phys Rev E 57:4316

    CAS  Google Scholar 

  60. Watanabe H, Sato T, Hirose M, Osaki K, Yao M (1998). Rheologica Acta 37:519

    CAS  Google Scholar 

  61. Jadzin J, Czechowsky G (2003). Phys Rev E 67:041705

    Google Scholar 

  62. Li J, Wang I, Fayer M (2005). J Phys Chem B 109:6514

    CAS  Google Scholar 

  63. Jadzin J, Lech RDT, Czechowski G (2001). J Chem Eng Data 46:110

    Google Scholar 

  64. Seo DS, Matsuda H, Ide TO, Kobayashi S (1993). Mol Cry Liq Cry 224:13

    CAS  Google Scholar 

  65. Blinov LM, Cipparone RBC, Iovane M, Checco A, Lazarev VV, Palto SP (1999). Liq Cryst 26:427

    CAS  Google Scholar 

  66. Claverie P (1978) Elaboration of approximate formulas for the interaction between large molecules: application in organic chemistry, In: Pullmann B, Intermolecular–Interaction: from diatomics to biopolymers, Wiley, London

  67. Zhang D, Zhang J (2003). J Chem Phys 119:3599

    CAS  Google Scholar 

  68. Gay JG, Berne B (1981). J Chem Phys 74:3316

    CAS  Google Scholar 

  69. Cleaver DJ, Care CM, Allen MP, Neal NP (1996). Phys Rev E 54:559

    CAS  Google Scholar 

  70. Buckingam A (1978). Adv Chem Phys 12:107

    Google Scholar 

  71. Amovilli C, March NH (2005). Carbon 43:1634

    CAS  Google Scholar 

  72. Boys SF, Bernardi F (1970). Mol Phys 19:553

    CAS  Google Scholar 

  73. Tsuzuki S, Uchimaru T, Mikami M, Tanabe K (1996). Chem Phys Lett 252:206

    CAS  Google Scholar 

  74. Becke A (1993). J Chem Phys 98:5648

    CAS  Google Scholar 

  75. Frisch MJ et al. (2003) Gaussian 03 (Revision A.1). Gaussian Inc., Pittsburgh

  76. Metropolis N, Rosenbluth AW, Rosenbluth MH, Teller AH, Teller E (1953). J Chem Phys 21:1087

    CAS  Google Scholar 

  77. Paschen D, Geiger A (2000) MOSCITO 3.9; Department of Physical Chemistry: University of Dortmund

  78. Berendsen HJC, Postma JPM, van Gusteren WF, Di Nola A, Haak JR (1984). J Chem Phys 81:3684

    CAS  Google Scholar 

  79. Ryckaert JP, Ciccotti G, Berendsen HJC (1977). J Comput Phys 55:3336

    Google Scholar 

  80. Darden T, York D, Pedersen L (1993). J Chem Phys 98:10089

    CAS  Google Scholar 

  81. Essmann U, Perera L, Berkowitz M, Darden A, Lee H, Pedersen L (1995). J Chem Phys 103:8577

    CAS  Google Scholar 

  82. Allen M, Tildesley D (1987) Computer simulation of liquids. Oxford, Clarendon

    Google Scholar 

  83. Dymond J, Smith E (1969) The virial coeficients of gases: a critical compilation. Clarendon Press, Oxford

    Google Scholar 

  84. Handbook of chemistry and physicis CRC press, Boca Raton, 1997

  85. Bacon G, Curry N, Wilson S (1964). Proc Roy Soc Lond A 279:98

    Article  CAS  Google Scholar 

  86. Timmermans J (1950) Physical chemical constants of pure organic compounds. Elsevier, Amsterdam

    Google Scholar 

  87. Smith G (1979). Mol Cry Liq Cry 49:207

    CAS  Google Scholar 

  88. Klüner R (1995) Rotatorische Dynamik von Kohlenwasserstoffen in flüssiger Phase. Shaker-Verlag, Aachen

    Google Scholar 

  89. Grolier J, Roux-Desgranges G, Berkane M, Jimenez E, Wilhelm E (1993). J Chem Thermodynam 25:41

    CAS  Google Scholar 

  90. Majer V, Svoboda V (1985) Enthalpies of vaporization of organic compounds: a critical review and data compilation. Blackwell, Oxford

    Google Scholar 

  91. Falcone D, Douglass D, McCall D (1967). J Phys Chem 71:2754

    CAS  Google Scholar 

  92. Landolt-Börnstein (1969) Zahlenwerte und Funktionen, Band II, Teil 5, Transport Phänomene. Springer, Berlin New York

    Google Scholar 

  93. Linde B, Lezhnev N (2000). Ultrasonics 38:945

    CAS  Google Scholar 

  94. Cacelli I, Prampolini G (2003). J Phys Chem A 107:8665

    CAS  Google Scholar 

  95. Smit G (1977). Mol Cry Liq Cry 49:207

    Google Scholar 

  96. Irvine PA, Wu C, Flory P (1984). J Chem Soc Faraday Trans 80:1795

    CAS  Google Scholar 

  97. Bastiansen O, Fernholt L, Cyvin BCS, Samdal S, Almenningen A (1985). J Mol Struct 128:59

    Google Scholar 

  98. Bastiansen O, Samdal S (1985). J Mol Struct 128:115

    CAS  Google Scholar 

  99. Steele D, Eaton V (1973). J Chem Soc Faraday Trans 69:1601

    Google Scholar 

  100. Delugeard Y, Charbonneau G (1976). Acta Crystallogr B 33:1586

    Google Scholar 

  101. Baker K, Fratini A, Resch T, Knachel H, Adams W, Socci E, Farmer B (1993). Polym Pap 69:1601

    Google Scholar 

  102. Hautpmann S, Mosell T, Reiling S, Brickmann J (1996). J Chem Phys 208:57

    Google Scholar 

  103. Dvinskikh S, Furo’ I (2001). J Chem Phys 115:1946

    CAS  Google Scholar 

  104. Calucci L, Geppi M (2001). J Chem Inf Comput Sci 41:1006

    CAS  Google Scholar 

  105. Catalano D, Cifelli M, Geppi M, Veracini C (2001). J Phys Chem A 105:34

    CAS  Google Scholar 

  106. Dong R (1988). J Chem Phys 88:3962

    CAS  Google Scholar 

  107. Dong R, Richards G (1992). Chem Phys Lett 200:541

    CAS  Google Scholar 

  108. Deeg F, Greenfield S, Stankus J, Newell V, Fayer M (1990). J Chem Phys 93:3503

    CAS  Google Scholar 

  109. Gottke SD, Cang H, Bagchi B, Fayer M (2002). J Chem Phys 116:6339

    CAS  Google Scholar 

  110. Béguin A, Billard J, Bonamy F, Buisine J, Cuivalier P, Dubois J, Barny PL (1984). Mol Cry Liq Cry 115:119

    Google Scholar 

  111. Ferrarini A, Luckhurst G, Nordio L (1995). Mol Phys 85:131

    CAS  Google Scholar 

  112. Ojha D, Kumar D, Pisipati V (2002). Cryst Res Technol 37:881

    CAS  Google Scholar 

  113. Berardi R, Muccioli L, Zannoni C (2004). Chem Phys Chem 5:104

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Cacelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amovilli, C., Cacelli, I., Cinacchi, G. et al. Structure and dynamics of mesogens using intermolecular potentials derived from ab initio calculations. Theor Chem Account 117, 885–901 (2007). https://doi.org/10.1007/s00214-006-0209-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-006-0209-y

Keywords

Navigation