Theoretical Chemistry Accounts

, Volume 119, Issue 1–3, pp 5–18 | Cite as

Philip J. Stephens: A scientific memoir

Regular Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Philip J. Stephens Publications: 1964–2006

  1. 1.
    Buckingham AD, Stephens PJ (1964) The Stark effect in molecules with strong nuclear quadrupole coupling. Mol Phys 7:481–491Google Scholar
  2. 2.
    Buckingham AD, Stephens PJ (1964) Proton chemical shifts in the nuclear magnetic resonance spectra of transition-metal hydrides: octahedral complexes. J Chem Soc 2747–2759Google Scholar
  3. 3.
    Buckingham AD, Stephens PJ (1964) Proton chemical shifts in the nuclear magnetic resonance spectra of transition-metal hydrides: square-planar platinum (II) complexes. J Chem Soc 4583–4587Google Scholar
  4. 4.
    Buckingham AD, Stephens PJ (1965) The chemical shifts of protons in transition metal hydrides. Nuclear magnetic resonance in chemistry. Academic, New York, pp 35–43Google Scholar
  5. 5.
    Stephens PJ (1965) The Faraday rotation of allowed transitions: charge-transfer transitions in K3Fe(CN)6. Inorg Chem 4:1690–1692Google Scholar
  6. 6.
    Stephens PJ (1965) Dispersion of the Faraday effect in \({{{\rm CoCl}_{4}^{2-}}}\) . J Chem Phys 43:4444–4446Google Scholar
  7. 7.
    McCaffery AJ, Henning GN, Schatz PN, Ritchie AB, Perzanowski HP, Rodig OR, Norvelle AW Jr, Stephens PJ (1966) The magnetic optical activity of the n-> π* carbonyl transition. Chem Commun 520–522Google Scholar
  8. 8.
    Stephens PJ (1966) Faraday effect of vibronically allowed transitions: d -> d transitions in Co(III) complexes. J Chem Phys 44:4060–4061Google Scholar
  9. 9.
    Stephens PJ, Suetaka W, Schatz PN (1966) Magneto- optical rotatory dispersion of porphyrins and phthalocyanines. J Chem Phys 44:4592–4602Google Scholar
  10. 10.
    Schatz PN, McCaffery AJ, Suetaka W, Henning GN, Ritchie AB, Stephens PJ (1966). Faraday effect of charge-transfer transitions in \({{{\rm Fe(CN)}_{6}^{3-}, {{\rm MnO}}_{4}^{-}}}\) , and \({{{\rm CrO}_{4}^{2-}}}\) . J Chem Phys 45:722–734Google Scholar
  11. 11.
    Buckingham AD, Stephens PJ (1966) Magnetic optical activity. Ann Rev Phys Chem 17:399–432Google Scholar
  12. 12.
    McCaffery AJ, Stephens PJ, Schatz PN (1967) The magnetic optical activity of d -> d transitions. Octahedral chromium (III), cobalt (III), cobalt (II), nickel(II) and manganese (II) complexes. Inorg Chem 6:1614–1625Google Scholar
  13. 13.
    Stephens PJ, Schatz PN, Ritchie AB, McCaffery AJ (1968) Magnetic circular dichroism of benzene, triphenylene and coronene. J Chem Phys 48:132–138Google Scholar
  14. 14.
    Schatz PN, Stephens PJ, Henning GN, McCaffery AJ (1968) Magnetic circular dichroism of charge-transfer transitions in \({{{\rm SbCl}_{6}^{-}}}\) and \({{{\rm SnCl}_{6}^{2-}}}\) . Inorg Chem 7:1246–1248Google Scholar
  15. 15.
    Stephens PJ, McCaffery AJ, Schatz PN (1968) The magnetic circular dichroism of \({{{\rm Ni(CN)}_{4}^{2-}}}\) . Inorg Chem 7:1923–1925Google Scholar
  16. 16.
    Henning GN, McCaffery AJ, Schatz PN, Stephens PJ (1968) Magnetic circular dichroism of charge-transfer transitions: low-spin d 5 hexahalide complexes. J Chem Phys 48:5656–5661Google Scholar
  17. 17.
    Stephens PJ, Lowe-Pariseau M (1968) Zeeman study of the Jahn–Teller effect in the 3 T 2g state of Al 2 O 3:V 3+. Phys Rev 171:322–335Google Scholar
  18. 18.
    Stephens PJ (1968) Excited state magnetic moments through moment analysis of magnetic circular dichroism. Chem Phys Lett 2:241–244Google Scholar
  19. 19.
    McCaffery AJ, Schatz PN, Stephens PJ (1968) Magnetic circular dichroism of d8 square-planar complexes. J Am Chem Soc 90:5730–5735Google Scholar
  20. 20.
    Stephens PJ (1969) Dynamic Jahn–Teller effect in trigonally distorted cubic systems. J Chem Phys 51:1995–2005Google Scholar
  21. 21.
    Stephens PJ (1969) Identification of new species by magnetic circular dichroism: square-planar \({{{\rm S}_{4}^{2+}}}\) . Chem Commun 1496–1497Google Scholar
  22. 22.
    Stephens PJ (1969) Magnetic circular dichroism of \({{{\rm Se}_{4}^{2+}}}\) and \({{{\rm Te}_{4}^{2+}}}\) . Faraday Soc Symp 3:40–48Google Scholar
  23. 23.
    Stephens PJ (1970) Theory of magnetic circular dichroism. J Chem Phys 52:3489–3516Google Scholar
  24. 24.
    Osborne GA, Bird BD, Stephens PJ, Duffield JJ, Abu- Shumays A (1971) Magnetic circular dichroism of the LiF F center. Solid State Commun 9:33–36Google Scholar
  25. 25.
    Lomenzo JA, Bird BD, Osborne GA, Stephens PJ (1971) Detection and assignment of weak absorption bands by magnetic circular dichroism: spin-forbidden transitions of \({{{\rm CoCl}_{4}^{2-}}}\) . Chem Phys Lett 9:332–335Google Scholar
  26. 26.
    Stephens PJ, Mowery RL, Schatz PN (1971) Moment analysis of magnetic circular dichroism: diamagnetic molecular solutions. J Chem Phys 55:224–231Google Scholar
  27. 27.
    Beaudet RA, Stephens PJ (1971) Identification of \({{{\rm S}_{4}^{+}}}\) in sulphur–oleum solutions. Chem Commun 1083–1084Google Scholar
  28. 28.
    McClure DS, Stephens PJ (1971). Electronic spectra of coordination compounds. In: Martell AE (eds). Coordination chemistry, vol 1, ACS Monograph 168. Van Nostrand Reinhold, New York, pp 84–133Google Scholar
  29. 29.
    Osborne GA, Stephens PJ (1972) Magnetic circular dichroism of impurities in solids: allowed electronic transitions and the LiF F center. J Chem Phys 56:609–618Google Scholar
  30. 30.
    Bird BD, Osborne GA, Stephens PJ (1972) Magnetic circular dichroism of impurities in solids: vibrationally induced d->d transitions in MgO:Ni 2+. Phys Rev B5:1800–1812Google Scholar
  31. 31.
    Cheng JC, Mann A, Osborne GA, Stephens PJ (1972) Infrared magnetic circular dichroism: on the misidentification of the 2 E g state of MgO:Co 2+. J Chem Phys 57:4051–4052Google Scholar
  32. 32.
    Osborne GA, Cheng JC, Stephens PJ (1973) A near-infrared circular dichroism and magnetic circular dichroism instrument. Rev Sci Instrum 44:10–15Google Scholar
  33. 33.
    Cheng JC, Osborne GA, Stephens PJ, Eaton WA (1973) Infrared magnetic circular dichroism: a new spectroscopic tool for the study of metalloproteins. Nature 241: 193–194Google Scholar
  34. 34.
    Boccara AC, Duran J, Briat B, Stephens PJ (1973) Stress-induced linear dichroism studies of molecules in solids: \({{{\rm S}_{2}^{-}, {{\rm S}}_{3}^{-}}}\) and \({{{\rm Se}_{2}^{-}}}\) in KI. Chem Phys Lett 19:187–190Google Scholar
  35. 35.
    Mann AJ, Stephens PJ (1974) Magnetic circular dichroism of impurities in solids: MgO:Co 2+. Phys Rev B 9:863–874Google Scholar
  36. 36.
    Mann AJ, Stephens PJ (1974) Magnetic circular dichroism of impurities in solids: KMgF 3:Co 2+. Chem Phys 4:96–106Google Scholar
  37. 37.
    Stephens PJ (1974) Magnetic circular dichroism. Ann Rev Phys Chem 25:201–232Google Scholar
  38. 38.
    Brith M, Schnepp O, Stephens PJ (1974) Magnetic circular dichroism spectra of the halogen molecules, I 2, Br 2 and Cl 2. Resolution of overlapping \({{{\rm O}_{\rm u}^{+} (^3{\Pi)}}}\) and \({^{1}\Pi}\) bands. Chem Phys Lett 26:549–552Google Scholar
  39. 39.
    Allen SD, Mason MG, Schnepp O, Stephens PJ (1975) The magnetic circular dichroism spectrum of benzene and toluene and the magnetic moment of the \({^{1}{{\rm E}}_{\rm lu}}\) state. Chem Phys Lett 30:140–142Google Scholar
  40. 40.
    Brith M, Rowe MD, Schnepp O, Stephens PJ (1975) The magnetic circular dichroism spectrum of the halogen molecules I 2, Br 2 and Cl 2. Resolution of overlapping continua. Chem Phys 9:57–73Google Scholar
  41. 41.
    Stephens PJ (1975). Vibrational-electronic interactions. In: Day P (eds). Electronic states of inorganic compounds: new experimental techniques. Reidel, Dordrecht, pp. 95–112Google Scholar
  42. 42.
    Stephens PJ (1975). Theory of magnetic circular dichroism spectroscopy. In: Day P (eds). Electronic states of inorganic compounds: new experimental techniques. Reidel, Dordrecht, pp. 141–156Google Scholar
  43. 43.
    Cheng JC, Nafie LA, Stephens PJ (1975) Polarization scrambling using a photoelastic modulator: application to circular dichroism measurement. J Opt Soc Am 65:1031–1035CrossRefGoogle Scholar
  44. 44.
    Nafie LA, Cheng JC, Stephens PJ (1975) Vibrational circular dichroism of 2,2,2-trifluoro-1-phenylethanol. J Am Chem Soc 97:3842Google Scholar
  45. 45.
    Keiderling TA, Stephens PJ, Piepho SB, Slater JL, Schatz PN (1975) Infrared absorption and magnetic circular dichroism of Cs 2 ZrCl 6:Ir 4+. Chem Phys 11:343–348Google Scholar
  46. 46.
    Stephens PJ (1976) Magnetic circular dichroism. Adv Chem Phys 35:197–264Google Scholar
  47. 47.
    Stephens PJ, Sutherland JC, Cheng JC, Eaton WA (1976). The study of spin-states of heme proteins by near infrared magnetic circular dichroism. In: Birks JB (eds) Excited states of biological molecules. Wiley, New York, pp. 434–442Google Scholar
  48. 48.
    Nafie LA, Keiderling TA, Stephens PJ (1976) Vibrational circular dichroism. J Am Chem Soc 98:2715–2723Google Scholar
  49. 49.
    Keiderling TA, Stephens PJ (1976) Vibrational circular dichroism of overtone and combination bands. Chem Phys Lett 41:46–48Google Scholar
  50. 50.
    Solomon EI, Rawlings J, McMillin DR, Stephens PJ, Gray HB (1976) Infrared and visible circular dichroism and magnetic circular dichroism studies on cobalt (II)-substituted blue copper proteins. J Am Chem Soc 98:8046–8048Google Scholar
  51. 51.
    Stephens PJ (1976) Polarized light in chemistry. Proc Soc Photo Opt Inst Eng 88:75–77Google Scholar
  52. 52.
    Rawlings J, Stephens PJ, Nafie LA, Kamen MD (1977) Near-infrared magnetic circular dichroism of cytochrome c′. Biochemistry 16:1725–1729Google Scholar
  53. 53.
    Gray HB, Coyle CL, Dooley DM, Grunthaner PJ, Hare JW, Holwerda RA, McArdle JV, McMillin DR, Rawlings J, Rosenberg RC, Sailasuta N, Solomon EI, Stephens PJ, Wherland S, Wurzbach JA (1977) Structure and electron transfer reactions of blue copper proteins. In: Raymond KN (ed) Advances in chemistry series no. 162, Bioinorganic chemistry II, ACS, pp 145–155Google Scholar
  54. 54.
    Keiderling TA, Stephens PJ (1977) Vibrational circular dichroism of dimethyl tartrate. A coupled oscillator. J Am Chem Soc 99:8061–8062Google Scholar
  55. 55.
    Clark R, Stephens PJ (1977) Vibrational optical activity. Proc Soc Photo Opt Inst Eng 112:127–131Google Scholar
  56. 56.
    Stephens PJ, Thomson AJ, Dunn JBR, Keiderling TA, Rawlings J, Rao KK, Hall DO (1978) Circular dichroism and magnetic circular dichroism of iron–sulfur proteins. Biochemistry 17:4770–4778Google Scholar
  57. 57.
    Eaton WA, Hanson LK, Stephens PJ, Sutherland JC, Dunn JBR (1978) Optical spectra of oxy- and deoxyhemoglobin. J Am Chem Soc 100:4991–5003Google Scholar
  58. 58.
    Stephens PJ, Thomson AJ, Keiderling TA, Rawlings J, Rao KK, Hall DO (1978) Cluster characterization in iron–sulfur proteins by magnetic circular dichroism. Proc Nat Acad Sci 75:5273–5275Google Scholar
  59. 59.
    Stephens PJ, Clark R (1979). Vibrational circular dichroism: the experimental viewpoint. In: Mason SF (eds). Optical activity and chiral discrimination. Reidel, Dordrecht, pp. 263–287Google Scholar
  60. 60.
    Keiderling TA, Stephens PJ (1979) Vibrational circular dichroism of spirononadiene. Fixed partial charge calculations. J Am Chem Soc 101:1396–1400Google Scholar
  61. 61.
    Stephens PJ, McKenna CE, Smith BE, Nguyen HT, McKenna MC, Thomson AJ, Devlin F, Jones JB (1979) Circular dichroism and magnetic circular dichroism of nitrogenase proteins. Proc Nat Acad Sci 76:2585–2589Google Scholar
  62. 62.
    Dooley DM, Rawlings J, Dawson JH, Stephens PJ, Andreasson L-E, Malmstrom BG, Gray HB (1979) Spectroscopic studies of Rhus vernicifera and Polyporus versicolor Laccase. Electronic structures of the copper sites. J Am Chem Soc 101:5038–5046Google Scholar
  63. 63.
    Dawson JH, Dooley DM, Clark R, Stephens PJ, Gray HB (1979) Spectroscopic studies of ceruloplasmin. Electronic structures of the copper sites. J Am Chem Soc 101:5046–5053Google Scholar
  64. 64.
    Solomon EI, Hare JW, Dooley DM, Dawson JH, Stephens PJ, Gray HB (1980) Spectroscopic studies of stellacyanin, plastocyanin and azurin. Electronic structure of the blue copper sites. J Am Chem Soc 102:168–178Google Scholar
  65. 65.
    Dooley DM, Dawson JH, Stephens PJ, Gray HB (1981) Spectroscopic studies of ascorbate oxidase. Electronic structure of the blue copper sites. Biochemistry 20:2024–2028Google Scholar
  66. 66.
    Stephens PJ, McKenna CE, McKenna MC, Nguyen HT, Devlin F (1981) Circular dichroism and magnetic circular dichroism of reduced molybdenum–iron protein of Azotobacter vinelandii nitrogenase. Biochemistry 20:2857–2864Google Scholar
  67. 67.
    Stephens PJ, McKenna CE, McKenna MC, Nguyen HT, Morgan TV, Devlin F (1981). Circular dichroism and magnetic circular dichroism studies of nitrogenase proteins. In: Gibson AH, Newton WE (eds) Current perspectives in nitrogen fixation. Elsevier, Amsterdam, pp. 357Google Scholar
  68. 68.
    Stephens PJ, McKenna CE, McKenna MC, Nguyen HT, Lowe DJ (1982). Circular dichroism and magnetic circular dichroism of nitrogenase proteins. In: Ho C (eds) Electron transport and oxygen utilization. Elsevier, Amsterdam, pp. 405–409Google Scholar
  69. 69.
    Schlosser DW, Devlin F, Jalkanen K, Stephens PJ (1982) Vibrational circular dichroism of matrix-isolated molecules. Chem Phys Lett 88:286–291Google Scholar
  70. 70.
    McKenna CE, Nguyen HT, Huang CW, McKenna MC, Jones JB, Stephens PJ (1982). Nitrogenase: preparative methods as a basis for new investigative approaches: or, when less cytochrome is better. In: Kaplan NO, Robinson A (eds) From cyclotrons to cytochromes: essays in molecular biology and chemistry. Academic Press, New York, pp. 397–416Google Scholar
  71. 71.
    Browett WR, Fucaloro AF, Morgan TV, Stephens PJ (1983) Magnetic circular dichroism determination of zero-field splitting in chloro (meso-tetraphenylporphinato) iron (III). J Am Chem Soc 105:1868–1872Google Scholar
  72. 72.
    Morgan TV, Stephens PJ, Devlin F, Stout CD, Melis KA, Burgess BK (1984) Spectroscopic studies of ferricyanide oxidation of Azotobacter vinelandii ferredoxin I. Proc Nat Acad Sci 81:1931–1935Google Scholar
  73. 73.
    Morgan TV, Stephens PJ, Burgess BK, Stout CD (1984) Reconstitution of Azotobacter vinelandii ferredoxin I as a {2[4Fe–4S]1+/2+} protein. FEBS Lett 167:137–141Google Scholar
  74. 74.
    McKenna CE, Stephens PJ, Eran H, Luo GM, Zhang FX, Ding M, Nguyen HT (1984). Substrate interactions with nitrogenase and its Fe–Mo cofactor: chemical and spectroscopic investigations. In: Veeger C, Newton WE (eds). Advances in nitrogen fixation research. Nijhoff, The Hague, pp. 115–122Google Scholar
  75. 75.
    Stephens PJ, Devlin F, McKenna MC, Morgan TV, Czechowski M, Der Vartanian DV, Peck HD, LeGall J (1985) Magnetic circular dichroism of DCPIP-oxidized Desulfovibrio vulgaris hydrogenase. FEBS Lett 180:24–28Google Scholar
  76. 76.
    Morgan TV, Stephens PJ, Devlin F, Burgess BK, Stout CD (1985) Selective oxidative destruction of iron–sulfur clusters: ferricyanide oxidation of Azotobacter vinelandii ferredoxin I. FEBS Lett 183:206–210Google Scholar
  77. 77.
    Stephens PJ, Morgan TV, Devlin F, Penner-Hahn JE, Hodgson KO, Scott RA, Stout CD, Burgess BK (1985) [4Fe–4S]-cluster-depleted Azotobacter vinelandii ferredoxin I: a new 3Fe iron–sulfur protein. Proc Nat Acad Sci 82:5661–5665Google Scholar
  78. 78.
    Stephens PJ, Morgan TV, Devlin F, Stout CD, Burgess BK (1985) Novel redox chemistry of Azotobacter vinelandii ferredoxin I. Rev Port De Quim 27:56–57Google Scholar
  79. 79.
    Stephens PJ (1985) Theory of vibrational circular dichroism. J Phys Chem 89:748–752Google Scholar
  80. 80.
    Stephens PJ, Lowe MA (1985) Vibrational circular dichroism. Ann Rev Phys Chem 36:213–241Google Scholar
  81. 81.
    Stephens PJ (1985). The structures of the iron molybdenum and the iron proteins of the nitrogenase enzyme. In: Spiro TG (ed) Molybdenum enzymes. Wiley, New York, pp. 117–159Google Scholar
  82. 82.
    Lowe MA, Stephens PJ, Segal GA (1986) The theory of vibrational circular dichroism: trans l,2-dideuteriocyclobutane and propylene oxide. Chem Phys Lett 123:108–116Google Scholar
  83. 83.
    Stephens PJ, Morgan TV, Stout CD, Burgess BK (1986). Super-reduction of 7Fe Azotobacter vinelandii ferredoxin I and direct conversion to the 8Fe form. In: Xavier AV (ed) Frontiers in bioinorganic chemistry. VCH Verlagsgesellschaft, pp 637–646Google Scholar
  84. 84.
    Lowe MA, Segal GA, Stephens PJ (1986) The theory of vibrational circular dichroism: trans-l,2-dideuteriocyclopropane. J Am Chem Soc 108:248–256Google Scholar
  85. 85.
    Lowe MA, Alper JS, Kawiecki R, Stephens PJ (1986) Scaled ab initio force fields for ethylene oxide and propylene oxide. J Phys Chem 90:41–50Google Scholar
  86. 86.
    Lazzeretti P, Zanasi R, Stephens PJ (1986) Magnetic dipole transition moments and rotational strengths of vibrational transitions: an alternative formalism. J Phys Chem 90:6761–6763Google Scholar
  87. 87.
    Stephens PJ (1987) The theory of vibrational optical activity. In: Avery J, Dahl JP, Hansen AE, Reidel D (eds) Understanding molecular properties, pp 333–342Google Scholar
  88. 88.
    Amos RD, Handy NC, Jalkanen KJ, Stephens PJ (1987) Efficient calculation of vibrational magnetic dipole transition moments and rotational strengths. Chem Phys Lett 133:21–26Google Scholar
  89. 89.
    Stephens PJ (1987) Gauge dependence of vibrational magnetic dipole transition moments and rotational strengths. J Phys Chem 91:1712–1715Google Scholar
  90. 90.
    Jalkanen KJ, Stephens PJ, Amos RD, Handy NC (1987) Theory of vibrational circular dichroism: trans-1(S), 2(S)-dicyanocyclopropane. J Am Chem Soc 109:7193–7194Google Scholar
  91. 91.
    Jalkanen KJ, Stephens PJ, Amos RD, Handy NC (1987) Basis set dependence of ab initio predictions of vibrational rotational strengths: NHDT. Chem Phys Lett 142:153–158Google Scholar
  92. 92.
    Devlin F, Stephens PJ (1987) Vibrational circular dichroism measurement in the frequency range of 800 to 650 cm−1. Appl Spectrosc 41:1142–1144Google Scholar
  93. 93.
    Bonam D, McKenna MC, Stephens PJ, Ludden PW (1988) Nickel-deficient carbon monoxide dehydrogenase from Rhodospirillum rubrum: in vivo and in vitro activation by exogenous nickel. Proc Nat Acad Sci 85:31–35Google Scholar
  94. 94.
    Jalkanen KJ, Stephens PJ, Amos RD, Handy NC (1988) Gauge dependence of vibrational rotational strengths: NHDT. J Phys Chem 92:1781–1785Google Scholar
  95. 95.
    Jalkanen KJ, Stephens PJ, Amos RD, Handy NC (1998) Theory of vibrational circular dichroism: trans-2,3-dideuterio-oxirane. J Am Chem Soc 110:2012–2013Google Scholar
  96. 96.
    Kawiecki RW, Devlin F, Stephens PJ, Amos RD, Handy NC (1988) Vibrational circular dichroism of propylene oxide. Chem Phys Lett 145:411–417Google Scholar
  97. 97.
    Amos RD, Jalkanen KJ, Stephens PJ (1988) Alternative formalism for the calculation of atomic polar tensors and atomic axial tensors. J Phys Chem 92:5571–5575Google Scholar
  98. 98.
    Jalkanen KJ, Stephens PJ, Lazzeretti P, Zanasi R (1989) Nuclear shielding tensors, atomic polar and axial tensors and vibrational dipole and rotational strengths of NHDT. J Chem Phys 90:3204–3213Google Scholar
  99. 99.
    Stephens PJ, Jalkanen KJ, Lazzeretti P, Zanasi R (1989) Calculation of paramagnetic susceptibilities using electronic atomic axial tensors (or nuclear shielding tensors) and the distributed origin gauge: ethylene oxide. Chem Phys Lett 156:509–519Google Scholar
  100. 100.
    Lowery RG, Chang CL, Davis LC, McKenna MC, Stephens PJ, Ludden PW (1989) Substitution of histidine for arginine-101 of dinitrogenase reductase disrupts electron transfer to dinitrogenase. Proc Nat Acad Sci 28:1206–1212Google Scholar
  101. 101.
    Reem RC, McCormick JM, Richardson DE, Devlin FJ, Stephens PJ, Musselman RL, Solomon EI (1989) Spectroscopic studies of the coupled binuclear ferric active site in methemerythrins and oxyhemerythrin: the electronic structure of each iron center and the iron-oxo and iron-peroxide bonds. J Am Chem Soc 111:4688–4704Google Scholar
  102. 102.
    Stephens PJ (1989) The a priori prediction of vibrational circular dichroism spectra: a new approach to the study of the stereochemistry of chiral molecules. Croat Chem Acta 62:429–440Google Scholar
  103. 103.
    Stephens PJ (1989). Vibronic interactions in the electronic ground state: vibrational circular dichroism spectroscopy. In: Flint CD (eds). Vibronic processes in inorganic chemistry. Kluwer, Dordrecht, pp. 371–384Google Scholar
  104. 104.
    Stephens PJ (1989) Near-infrared magnetic circular dichroism of heme proteins. Proc SPIE Int Soc Opt Eng 1057:2–6Google Scholar
  105. 105.
    Simpkin D, Palmer G, Devlin FJ, McKenna MC, Jensen GM, Stephens PJ (1989) The axial ligands to heme in cytochromes: a near-infrared magnetic circular dichroism study of yeast cytochromes c, c 1, and b and spinach cytochrome f. Biochemistry 28:8033–8039Google Scholar
  106. 106.
    Stephens PJ, Jalkanen KJ (1989) A new formalism for paramagnetic susceptibilities: CH 3 F. J Chem Phys 91:1379–1381Google Scholar
  107. 107.
    Stephens PJ, McKenna MC, Ensign SA, Bonam D, Ludden PW (1989) Identification of a Ni- and Fe-containing cluster in rhodospirillum rubrum carbon monoxide dehydrogenase. J Biol Chem 264:16347–16350Google Scholar
  108. 108.
    Jalkanen KJ, Stephens PJ, Lazzeretti P, Zanasi R (1989) Random phase approximation calculations of vibrational circular dichroism: trans-2,3-dideuteriooxirane. J Phys Chem 93:6583–6584Google Scholar
  109. 109.
    Annamalai A, Jalkanen KJ, Narayanan U, Tissot MC, Keiderling TA, Stephens PJ (1990) Theoretical study of the vibrational circular dichroism of l,3-dideuterioallene: comparison of methods. J Phys Chem 94:194–199Google Scholar
  110. 110.
    Stephens PJ, Jalkanen KJ, Amos RD, Lazzeretti P, Zanasi R (1990) Ab initio calculations of atomic polar and axial tensors for HF, H 2 O, NH 3 and CH 4. J Phys Chem 94:1811–1830Google Scholar
  111. 111.
    Martin AE, Burgess BK, Stout CD, Cash VL, Dean DR, Jensen GM, Stephens PJ Site-directed mutagenesis of Azotobacter vinelandii ferredoxin I: [Fe–S] cluster driven protein rearrangement. Proc Nat Acad Sci 87:598–602Google Scholar
  112. 112.
    Jalkanen KJ, Kawiecki RW, Stephens PJ, Amos RD (1990) Basis set and gauge dependence of ab initio calculations of vibrational rotational strengths. J Phys Chem 94:7040–7055Google Scholar
  113. 113.
    Stephens PJ, Jalkanen KJ, Kawiecki RW (1990) Theory of vibrational rotational strengths: comparison of a priori theory and approximate models. J Am Chem Soc 112:6518–6529Google Scholar
  114. 114.
    Bursi R, Devlin FJ, Stephens PJ (1990) Vibrationally induced ring currents? The vibrational circular dichroism of methyl lactate. J Am Chem Soc 112:9430–9432Google Scholar
  115. 115.
    Stephens PJ, Jensen GM, Devlin FJ, Morgan TV, Stout CD, Martin AE, Burgess BK (1991) Circular dichroism and magnetic circular dichroism of Azotobacter vinelandii Ferredoxin I. Biochemistry 30:3200–3209Google Scholar
  116. 116.
    Hansen AE, Stephens PJ, Bouman TD (1991) Theory of vibrational circular dichroism: formalisms for atomic polar and axial tensors using non-canonical orbitals. J Phys Chem 95:4255–4262Google Scholar
  117. 117.
    Jalkanen KJ, Stephens PJ (1991) Ab initio calculation of force fields and vibrational spectra: 2-oxetanone. J Phys Chem 95:5446–5454Google Scholar
  118. 118.
    Bursi R, Stephens PJ (1991) Ring current contributions to vibrational circular dichroism? Ab initio calculations for methyl glycolate-d 1 and -d 4. J Phys Chem 95:6447–6454Google Scholar
  119. 119.
    Kawiecki RW, Devlin FJ, Stephens PJ, Amos RD (1991) Vibrational circular dichroism of propylene oxide. J Phys Chem 95:9817–9831Google Scholar
  120. 120.
    Stephens PJ (1991) Evaluation of theories of vibrational magnetic dipole transition moments using atomic axial tensor sum rules and paramagnetic susceptibilities. Chem Phys Lett 180:472–476Google Scholar
  121. 121.
    Dooley DM, McGuirl MA, Rosenzweig AC, Landin JA, Scott RA, Zumft WG, Devlin F, Stephens PJ (1991). Spectroscopic studies of the copper sites in wild-type Pseudomonas stutzeri N 2 O reductase and in an inactive protein isolated from a mutant deficient in copper-site biosynthesis. Inorg Chem 30:3006–3011Google Scholar
  122. 122.
    Iismaa SE, Vazquez AE, Jensen GM, Stephens PJ, Butt JN, Armstrong FA, Burgess BK (1991) Site-directed mutagenesis of Azotobacter vinelandii ferredoxin I: changes in [4Fe-4S] Cluster reduction potential and reactivity. J Biol Chem 266:21563–21571Google Scholar
  123. 123.
    McCormick JM, Reem RC, Foroughi J, Bollinger JM, Jensen GM, Stephens PJ, Stubbe J, Solomon EI (1991) Excited state spectral features of the radical reduced, native and fully reduced forms of the coupled binuclear non-heme iron center in ribonucleotide reductase: active site differences relative to hemerythrin. New J Chem 15:439–444Google Scholar
  124. 124.
    Gebhard MS, Koch SA, Millar M, Devlin FJ, Stephens PJ, Solomon EI (1991) Single-crystal spectroscopic studies of \({{{\rm Fe(SR)}}_{4}^{2-}}\) (R = 2-(Ph)C 6 H 4): electronic structure of the ferrous site in rubredoxin. J Am Chem Soc 113:1640Google Scholar
  125. 125.
    Langen R, Jensen GM, Jacob U, Stephens PJ, Warshel A (1992) Protein control of iron–sulphur cluster redox potentials. J Biol Chem 267:25625–25627Google Scholar
  126. 126.
    Tan GO, Ensign SA, Ciurli S, Scott MJ, Hedman B, Holm RH, Ludden PW, Korszun ZR, Stephens PJ, Hodgson KO (1992) On the structure of the nickel/iron/sulfur center of the carbon monoxide dehydrogenase from Rhodospirillum rubrum: an X-ray absorption spectroscopy study. Proc Natl Acad Sci USA 89:4427–4431Google Scholar
  127. 127.
    Stephens PJ, Jalkanen KJ, Devlin FJ, Chabalowski CF (1993) Ab initio calculation of vibrational circular dichroism spectra using accurate post-self-consistent-field force fields: trans-2,3-dideuterio-oxirane. J Phys Chem 97:6107–6110Google Scholar
  128. 128.
    Shen B, Martin LL, Butt JN, Armstrong FA, Stout CD, Jensen GM, Stephens PJ, La Mar GN, Gorst CM, Burgess BK (1993) Azotobacter vinelandii ferredoxin I: aspartate 15 facilitates proton transfer to the reduced [3Fe–4S] cluster. J Biol Chem 268:25928–25939Google Scholar
  129. 129.
    Shen B, Jollie DR, Stout CD, Diller TC, Armstrong FA, Gorst CM, La Mar GN, Stephens PJ, Burgess BK (1994) Azotobacter vinelandii ferredoxin I: alteration of individual surface charges and the [4Fe − 4S]2+/+ cluster reduction potential. J Biol Chem 269:8564–8575Google Scholar
  130. 130.
    Devlin FJ, Stephens PJ (1994) Ab initio calculation of vibrational circular dichroism spectra of chiral natural products using MP2 force fields: Camphor. J Am Chem Soc 116:5003–5004Google Scholar
  131. 131.
    Stephens PJ, Chabalowski CF, Devlin FJ, Jalkanen KJ (1994) Ab initio calculation of vibrational circular dichroism spectra using large basis set MP2 force fields. Chem Phys Lett 225:247–257Google Scholar
  132. 132.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627Google Scholar
  133. 133.
    Jensen GM, Warshel A, Stephens PJ (1994) Calculation of the redox potentials of iron–sulfur proteins: the 2-/3-couple of [Fe 4 S*4 Cys 4] clusters in Peptococcus aerogenes ferredoxin, Azotobacter vinelandii ferredoxin I and Chromatium vinosum HiPIP. Biochemistry 33:10911–10924Google Scholar
  134. 134.
    Hu Z, Jollie DR, Burgess BK, Stephens PJ, Munck E (1994) Mössbauer and EPR studies of Azotobacter vinelandii ferredoxin I. Biochemistry 33:14475–14485Google Scholar
  135. 135.
    Alagna L, Di Fonzo S, Prosperi T, Turchini S, Lazzeretti P, Malagoli M, Zanasi R, Natoli CR, Stephens PJ (1994) Random phase approximation calculations of K-edge rotational strengths of chiral molecules: propylene oxide. Chem Phys Lett 223:402–410Google Scholar
  136. 136.
    Stephens PJ, Devlin FJ, Ashvar CS, Chabalowski CF, Frisch MJ (1994) Theoretical calculation of vibrational circular dichroism spectra. Faraday Discuss 99:103–119Google Scholar
  137. 137.
    Finley JW, Stephens PJ (1995) Density functional theory calculations of molecular structures and harmonic vibrational frequencies using hybrid density functionals. J Mol Str (Theochem) 357:225–235Google Scholar
  138. 138.
    Bak KL, Devlin FJ, Ashvar CS, Taylor PR, Frisch MJ, Stephens PJ (1995) Ab initio calculation of vibrational circular dichroism spectra using gauge-invariant atomic orbitals. J Phys Chem 99:14918–14922Google Scholar
  139. 139.
    Devlin FJ, Finley JW, Stephens PJ, Frisch MJ (1995) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields: a comparison of local, non-local and hybrid density functionals. J Phys Chem 99:16883–16902Google Scholar
  140. 140.
    Shen B, Jollie DR, Diller TC, Stout CD, Stephens PJ, Burgess BK (1995) Site-directed mutagenesis of Azotobacter vinelandii ferredoxin I: cysteine ligation of the [4Fe–4S] cluster with protein rearrangement is preferred over serine ligation. Proc Natl Acad Sci 92:10064–10068Google Scholar
  141. 141.
    Bak KL, Hansen AaE, Stephens PJ (1995) Ab initio calculations of atomic polar and axial tensors using the localized orbital/local origin (LORG) approach. J Phys Chem 99:17359–17363Google Scholar
  142. 142.
    Stephens PJ, Devlin FJ, Ashvar CS, Bak KL, Taylor PR, Frisch MJ (1996) Comparison of local, non-local and hybrid density functionals using vibrational absorption and circular dichroism spectroscopy. In: Laird BB, Ross RB, Ziegler T (eds) Chemical applications of density-functional theory. ACS Symposium Series, vol 629, pp 105–113Google Scholar
  143. 143.
    Cheeseman JR, Frisch MJ, Devlin FJ, Stephens PJ (1996) Ab initio calculation of atomic axial tensors and vibrational rotational strengths using density functional theory. Chem Phys Lett 252:211–220Google Scholar
  144. 144.
    Ashvar CS, Devlin FJ, Bak KL, Taylor PR, Stephens PJ (1996) Ab initio calculation of vibrational absorption and circular dichroism spectra: 6,8-dioxabicyclo[3.2.1]Octane. J Phys Chem 100:9262–9270Google Scholar
  145. 145.
    Stephens PJ, Ashvar CS, Devlin FJ, Cheeseman JR, Frisch MJ (1996) Ab initio calculation of atomic axial tensors and vibrational rotational strengths using density functional theory. Mol Phys 89:579–594Google Scholar
  146. 146.
    Devlin FJ, Stephens PJ, Cheeseman JR, Frisch MJ (1996) Prediction of vibrational circular dichroism spectra using density functional theory: camphor and fenchone. J Am Chem Soc 118:6327–6328Google Scholar
  147. 147.
    Stephens PJ, Jollie DR, Warshel A (1996) Protein control of redox potentials of iron–sulfur proteins. Chem Rev (Bioinorg Enzymol) 96:2491–2513Google Scholar
  148. 148.
    Reyntjens B, Jollie DR, Stephens PJ, Gao-Sheridan HS, Burgess BK (1997) Purification and characterization of a fix ABCX linked 2[4Fe–4S] ferredoxin from Azotobacter vinelandii. J Biol Inorg Chem 2:595–602Google Scholar
  149. 149.
    Devlin FJ, Stephens PJ, Cheeseman JR, Frisch MJ (1997) Ab initio prediction of vibrational absorption and circular dichroism spectra of chiral natural products using density functional theory: camphor and fenchone. J Phys Chem 101:6322–6333Google Scholar
  150. 150.
    Devlin FJ, Stephens PJ, Cheeseman JR, Frisch MJ (1997) Ab initio prediction of vibrational absorption and circular dichroism spectra of chiral natural products using density functional theory: α-pinene. J Phys Chem 101:9912–9924Google Scholar
  151. 151.
    Ashvar CS, Stephens PJ, Eggimann T, Wieser H (1998) Vibrational circular dichroism spectroscopy of chiral pheromones: frontalin (1,5-dimethyl-6,8- dioxabicyclo [3.2.1] octane). Tetrahedron Asymmetry 9:1107–1110Google Scholar
  152. 152.
    Ashvar CS, Devlin FJ, Stephens PJ, Bak KL, Eggimann T, Wieser H (1998) Vibrational absorption and circular dichroism of mono- and di-methyl derivatives of 6,8-dioxabicyclo [3.2.1] octane. J Phys Chem A 102:6842–6857Google Scholar
  153. 153.
    Devlin FJ, Stephens PJ (1999) Ab initio density functional theory study of the structure and vibrational spectra of cyclohexanone and its isotopomers. J Phys Chem A 103:527–538Google Scholar
  154. 154.
    Ashvar CS, Devlin FJ, Stephens PJ (1999) Molecular structure in solution: an Ab initio vibrational spectroscopy study of phenyloxirane. J Am Chem Soc 121:2836–2849Google Scholar
  155. 155.
    Aamouche A, Devlin FJ, Stephens PJ (1999) Determination of absolute configuration using circular dichroism: Tröger’s base revisited using vibrational circular dichroism. J Chem Soc Chem Comm 361–362Google Scholar
  156. 156.
    Devlin FJ, Stephens PJ (1999) Conformational analysis using ab initio vibrational spectroscopy: 3-methyl-cyclohexanone. J Am Chem Soc 121:7413–7414Google Scholar
  157. 157.
    Cheeseman JR, Frisch MJ, Devlin FJ, Stephens PJ (2000) Hartree–Fock and density functional theory ab initio calculation of optical rotation using GIAOs: basis set dependence. J Phys Chem A 104:1039–1046Google Scholar
  158. 158.
    Stephens PJ (2000) The theory of vibrational circular dichroism. Encyclopedia of spectroscopy and spectrometry. Academic, London, pp. 2415–2421Google Scholar
  159. 159.
    Stephens PJ, Devlin FJ (2000) Determination of the structure of chiral molecules using ab initio vibrational circular dichroism spectroscopy. Chirality 12:172–179Google Scholar
  160. 160.
    Aamouche A, Devlin FJ, Stephens PJ (2000) Structure, vibrational absorption and circular dichroism spectra and absolute configuration of Tröger’s base. J Am Chem Soc 122:2346–2354Google Scholar
  161. 161.
    Aamouche A, Devlin FJ, Stephens PJ (2000) Conformations of chiral molecules in solution: ab initio vibrational absorption and circular dichroism studies of 4, 4a, 5, 6, 7, 8-hexa hydro-4a-methyl-2(3H)naphthalenone, and 3, 4, 8, 8a-tetra hydro-8a-methyl-1, 6(2H, 7H)-naphthalenedione. J Am Chem Soc 122:7358–7367Google Scholar
  162. 162.
    Stephens PJ, Devlin FJ, Cheeseman JR, Frisch MJ, Mennucci B, Tomasi J (2000) Prediction of optical rotation using density functional theory: 6,8-dioxa-bicyclo [3.2.1] octanes. Tetrahedron Asymmetry 11:2443–2448Google Scholar
  163. 163.
    Aamouche A, Devlin FJ, Stephens PJ, Drabowicz J, Bujnicki B, Mikolajczyk M (2000) Vibrational circular dichroism and absolute configuration of chiral sulfoxides: tert-butyl methyl sulfoxide. Chem A Eur J 6:4479–4486Google Scholar
  164. 164.
    Stephens PJ, Aamouche A, Devlin FJ, Superchi S, Donnoli MI, Rosini C (2001) Determination of absolute configuration using vibrational circular dichroism spectroscopy: the chiral sulfoxide 1-(2-methylnaphthyl) methyl sulfoxide. J Org Chem 66:3671–3677Google Scholar
  165. 165.
    Devlin FJ, Stephens PJ, Scafato P, Superchi S, Rosini C (2001) Determination of absolute configuration using vibrational circular dichroism spectroscopy: the chiral sulfoxide 1-thiochroman S-oxide. Tetrahedron Asymmetry 12:1551–1558Google Scholar
  166. 166.
    Stephens PJ, Devlin FJ, Cheeseman JR, Frisch MJ (2001) Calculation of optical rotation using density functional theory. J Phys Chem A 105:5356–5371Google Scholar
  167. 167.
    Stephens PJ, Devlin FJ, Aamouche A (2002) Determination of the structures of chiral molecules using vibrational circular dichroism spectroscopy. In: Hicks JM (ed) Chirality: physical chemistry, ACS Symposium Series, vol 810, Chap 2, pp 18–33Google Scholar
  168. 168.
    Stephens PJ, Devlin FJ, Cheeseman JR, Frisch MJ (2002) Ab initio prediction of optical rotation: comparison of density functional theory and Hartree–Fock methods for three 2,7,8-trioxabicyclo [3.2.1] octanes. Chirality 14:288–296Google Scholar
  169. 169.
    Devlin FJ, Stephens PJ, Scafato P, Superchi S, Rosini C (2002) Determination of absolute configuration using vibrational circular dichroism spectroscopy: the chiral sulfoxide 1-thiochromanone S-oxide. Chirality 14:400–406Google Scholar
  170. 170.
    Mennucci B, Tomasi J, Cammi R, Cheeseman JR, Frisch MJ, Devlin FJ, Gabriel S, Stephens PJ (2002) Polarizable continuum model (PCM) calculations of solvent effects on optical rotations of chiral molecules. J Phys Chem A 106:6102–6113Google Scholar
  171. 171.
    Devlin FJ, Stephens PJ, Oesterle C, Wiberg KB, Cheeseman JR, Frisch MJ (2002) Configurational and conformational analysis of chiral molecules using IR and VCD spectroscopies: spiropentylcarboxylic acid methyl ester and spiropentyl acetate. J Org Chem 67:8090–8096Google Scholar
  172. 172.
    Devlin FJ, Stephens PJ, Scafato P, Superchi S, Rosini C (2002) Conformational analysis using IR and VCD spectroscopies: the chiral cyclic sulfoxides 1-thiochroman-4-one S-oxide, 1-thiaindan S-oxide and 1-thiochroman S-oxide. J Phys Chem A 106:10510–10524Google Scholar
  173. 173.
    Stephens PJ, Devlin FJ, Cheeseman JR, Frisch MJ, Rosini C (2002) Determination of absolute configuration using optical rotation calculated using density functional theory. Organic Lett 4:4595–4598Google Scholar
  174. 174.
    Stephens PJ, Devlin FJ, Cheeseman JR, Frisch MJ, Bortolini O, Besse P (2003) Determination of absolute configuration using ab initio calculation of optical rotation. Chirality 15:557–564Google Scholar
  175. 175.
    Ruud K, Stephens PJ, Devlin FJ, Taylor PR, Cheeseman JR, Frisch MJ (2003) Coupled-cluster calculations of optical rotation. Chem Phys Lett 373:606–614Google Scholar
  176. 176.
    Stephens PJ (2003). Vibrational circular dichroism spectroscopy: a new tool for the stereochemical characterization of chiral molecules. In: Bultinck P, de Winter H, Langenaecker W, Tollenaere J (eds). Computational medicinal chemistry for drug discovery. Dekker, New York, Chap 26, pp. 699–725Google Scholar
  177. 177.
    Stephens PJ, McCann DM, Butkus E, Stoncius S, Cheeseman JR, Frisch MJ (2004) Determination of absolute configuration using concerted ab initio DFT calculations of electronic circular dichroism and optical rotation: bicyclo[3.3.1]nonanediones. J Org Chem 69:1948–1958Google Scholar
  178. 178.
    Stephens PJ, McCann DM, Devlin FJ, Cheeseman JR, Frisch MJ (2004) Determination of the absolute configuration of [32](1,4)-barrelenophanedicarbonitrile using concerted time-dependent density functional theory calculations of optical rotation and electronic circular dichroism. J Am Chem Soc 126:7514–7521Google Scholar
  179. 179.
    McCann DM, Stephens PJ, Cheeseman JR (2004) Determination of absolute configuration using density functional theory calculation of optical rotation: chiral alkanes. J Org Chem 69:8709–8717Google Scholar
  180. 180.
    Cerè V, Peri F, Pollicino S, Ricci A, Devlin FJ, Stephens PJ, Gasparrini F, Rompietti R, Villani C (2005) Synthesis, chromatographic separation, VCD spectroscopy and ab initio DFT studies of chiral thiepane tetraols. J Org Chem 70:664–669Google Scholar
  181. 181.
    Stephens PJ, McCann DM, Cheeseman JR, Frisch MJ (2005) The determination of absolute configurations of chiral molecules using ab initio time-dependent density functional theory calculations of optical rotation: how reliable are absolute configurations obtained for molecules with small rotations? Chirality 17:S52–S64Google Scholar
  182. 182.
    Devlin FJ, Stephens PJ, Besse P (2005) Conformational rigidification via derivatization facilitates the determination of absolute configuration using chiroptical spectroscopy: chiral alcohols. J Org Chem 70:2980–2993Google Scholar
  183. 183.
    Stephens PJ, McCann DM, Devlin FJ, Flood TC, Butkus E, Stoncius S, Cheeseman JR (2005) Determination of molecular structure using vibrational circular dichroism (VCD) spectroscopy: the keto-lactone product of Baeyer–Villiger oxidation of (+)-(1R,5S)-bicyclo[3.3.1]nonane-2,7-dione. J Org Chem 70:3903–3913Google Scholar
  184. 184.
    Devlin FJ, Stephens PJ, Besse P (2005) Are the absolute configurations of 2-(1-hydroxyethyl)-chromen-4-one and its 6-bromo derivative determined by X-ray crystallography correct? A vibrational circular dichroism (VCD) study of their acetate derivatives. Tetrahedron Asymmetry 16:1557–1566Google Scholar
  185. 185.
    Urbanova M, Devlin FJ, Stephens PJ (2005) Determination of molecular structure in solution using vibrational circular dichroism spectroscopy: the supramolecular tetramer of 2,2’-dimethyl-biphenyl-6,6’-dicarboxylic acid. J Am Chem Soc 127:6700–6711Google Scholar
  186. 186.
    Devlin FJ, Stephens PJ, Bortolini O (2005) Determination of absolute configuration using vibrational circular dichroism spectroscopy: phenyl glycidic acid derivatives obtained via asymmetric epoxidation using oxone and a keto bile acid. Tetrahedron Asymmetry 16:2653–2663Google Scholar
  187. 187.
    Stephens PJ, McCann DM, Devlin FJ, Smith AB III (2006) Determination of the absolute configurations of natural products via density functional theory calculations of optical rotation, electronic circular dichroism and vibrational circular dichroism: the cytotoxic sesquiterpene natural products quadrone, suberosenone, suberosanone and suberosenol A acetate. J Nat Prod 69:1055–1064Google Scholar
  188. 188.
    McCann DM, Stephens PJ (2006) Determination of absolute configuration using density functional theory calculations of optical rotation and electronic circular dichroism: chiral alkenes. J Org Chem 71:6074–6098Google Scholar
  189. 189.
    Carosati E, Cruciani G, Chiarini A, Budriesi R, Ioan P, Spisani R, Spinelli D, Cosimelli B, Fusi F, Frosini M, Matucci R, Gasparrini F, Ciogli A, Stephens PJ, Devlin FJ (2006) Calcium channel antagonists discovered by a multidisciplinary approach. J Med Chem 49:5206–5216Google Scholar
  190. 190.
    Stephens PJ, Pan JJ, Devlin FJ, Urbanová M, Hájíček J Determination of the absolute configurations of natural products via density functional theory calculations of vibrational circular dichroism, electronic circular dichroism and optical rotation: The schizozygane alkaloid schizozygine. J Org Chem (in press)Google Scholar
  191. 191.
    Stephens PJ, Pan JJ, Devlin FJ, Krohn K, Kurtán T Determination of the absolute configurations of natural products via density functional theory calculations of vibrational circular dichroism, electronic circular dichroism and optical rotation: the iridoids plumericin and iso-plumericin. J Org Chem (submitted)Google Scholar
  192. 192.
    Stephens PJ, Devlin FJ, Gasparrini F, Carosati E Determination of the absolute configuration of an oxadiazol-3-one calcium channel blocker, via density functional theory calculations of its vibrational circular dichroism, electronic circular dichroism and optical rotation. J Org Chem (submitted)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations