Theoretical Chemistry Accounts

, Volume 119, Issue 1–3, pp 99–106 | Cite as

Response tensors for chiral discrimination in NMR spectroscopy

  • Paolo Lazzeretti
  • Alessandro Soncini
  • Riccardo Zanasi
Regular Article


Response tensors that may be used for rationalising chiral discrimination by nuclear magnetic resonance spectroscopy are selected relying on the criterion that the induced molecular electric moment and the induced magnetic field at a nucleus are invariant to a translation of the coordinate system.


Chem Phys Electric Dipole Magnetic Dipole Electric Dipole Moment Nuclear Magnetic Resonance Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harris RA, Jameson CJ (2006). J Chem Phys 124:096101CrossRefGoogle Scholar
  2. 2.
    Barra AL, Robert JB (1996). Mol Phys 88:875CrossRefGoogle Scholar
  3. 3.
    Barra AL, Robert JB, Wiesenfeld L (1988). Europhys Lett 5:217CrossRefGoogle Scholar
  4. 4.
    Robert JB, Barra AL (2001). Chirality 13:699CrossRefGoogle Scholar
  5. 5.
    Laubender G, Berger R (2003). Chem Phys Chem 4:395Google Scholar
  6. 6.
    Soncini A, Faglioni F, Lazzeretti P (2003). Phys Rev A 68:033402CrossRefGoogle Scholar
  7. 7.
    Weijo V, Manninen P, Vaara J (2005). J Chem Phys 123:054501CrossRefGoogle Scholar
  8. 8.
    Whitesides GM, Lewis DW (1973). J Am Chem Soc 95:6979Google Scholar
  9. 9.
    Parker D (1991). Chem Rev 91:1441CrossRefGoogle Scholar
  10. 10.
    Sears DN, Jameson CJ, Harris RA (2004). J Chem Phys 120:3277CrossRefGoogle Scholar
  11. 11.
    Mason SF (1982). Molecular optical activity and the chiral discriminations. Cambridge University Press, CambridgeGoogle Scholar
  12. 12.
    Barron LD, Bogaard MP, Buckingham AD (1973). J Am Chem Soc 95:603CrossRefGoogle Scholar
  13. 13.
    Curie P (1894). J Phys (Paris). 3:393, 3e série.Google Scholar
  14. 14.
    de Gennes PG, Acad CR (1970). Sci Paris, Série B, 891Google Scholar
  15. 15.
    Mead CA, Moscowitz A, Wynberg H, Meuwese F (1977). Tetrahedron Lett 12:1063CrossRefGoogle Scholar
  16. 16.
    Buckingham AD (2004). Chem Phys Lett 398:1CrossRefGoogle Scholar
  17. 17.
    Buckingham AD, Fischer P (2006). Chem Phys 324:111CrossRefGoogle Scholar
  18. 18.
    Buckingham AD (1960). Can J Chem 38:300CrossRefGoogle Scholar
  19. 19.
    Lazzeretti P (2003). Electric and magnetic properties of molecules. In: Wilson S (ed). Handbook of molecular physics and quantum chemistry, vol 3, Part 1, Chap 3. Wiley, Chichester, pp 53–145Google Scholar
  20. 20.
    Lazzeretti P (1987). Adv Chem Phys 75:507CrossRefGoogle Scholar
  21. 21.
    Langhoff PW, Epstein ST, Karplus M (1972). Rev Mod Phys 44:602CrossRefGoogle Scholar
  22. 22.
    Abragam A (1961). Principles of nuclear magnetism. Oxford University Press, Amen House, chap IIGoogle Scholar
  23. 23.
    Emsley JW, Feeney J, Sutcliffe LH (1967). High resolution nuclear magnetic resonance spectroscopy. Pergamon Press, Oxford chapt 2Google Scholar
  24. 24.
    Buckingham AD (1967). Adv Chem Phys 12:107CrossRefGoogle Scholar
  25. 25.
    Orr BJ, Ward JF (1971). Mol Phys 20:513CrossRefGoogle Scholar
  26. 26.
    Bogaard MP, Orr BJ (1975) Electric dipole polarisabilities of atoms and molecules. In: Buckingham AD (ed) International review of science. Molecular structure and properties. Physical chemistry series two, vol 2. Butterworths, London, pp 149–194Google Scholar
  27. 27.
    Olsen J, Jørgensen P (1985). J Chem Phys 82:3235CrossRefGoogle Scholar
  28. 28.
    Bloch F (1961) Zur Wirkung äußerer elektromagnetischer Felder auf kleine Systeme. In: Bopp F (ed) W. Heisenberg und die Physik unserer Zeit. Friedr. Wieveg & Son, Braunschweig, pp 93–102Google Scholar
  29. 29.
    Bishop DM (1990). Rev Mod Phys 62:343CrossRefGoogle Scholar
  30. 30.
    Lazzeretti P, Rossi E, Zanasi R (1983). Phys Rev A 27:1301 and references thereinGoogle Scholar
  31. 31.
    Lazzeretti P, Rossi E, Zanasi R (1983). J Chem Phys 83:889CrossRefGoogle Scholar
  32. 32.
    Lazzeretti P (1989). Chem Phys 134:269CrossRefGoogle Scholar
  33. 33.
    Epstein ST (1974) The variation method in quantum chemistry. Academic, New YorkGoogle Scholar
  34. 34.
    Ramsey NF (1952). Phys Rev 86:243CrossRefGoogle Scholar
  35. 35.
    Ramsey NF (1950). Phys Rev 78:699CrossRefGoogle Scholar
  36. 36.
    Buckingham AD, Stiles PJ (1974). Acc Chem Res 7:259CrossRefGoogle Scholar
  37. 37.
    Fowler PW, Buckingham AD, Galwas PA (1987). Chem Phys 112:1CrossRefGoogle Scholar
  38. 38.
    Lazzeretti P, Zanasi R (1986). Phys Rev A 33:3727CrossRefGoogle Scholar
  39. 39.
    Lazzeretti P, Zanasi R (1987). J Chem Phys 87:472CrossRefGoogle Scholar
  40. 40.
    Lazzeretti P, Zanasi R, Bursi R (1988). J Chem Phys 88:987CrossRefGoogle Scholar
  41. 41.
    Buckingham AD, Pople JA (1955). Proc Phys Soc A 68:905CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Paolo Lazzeretti
    • 1
  • Alessandro Soncini
    • 2
  • Riccardo Zanasi
    • 3
  1. 1.Dipartimento di ChimicaUniversità degli Studi di Modena e Reggio EmiliaModenaItaly
  2. 2.Laboratory of Quantum ChemistryKatholieke Universiteit LeuvenHeverlee–LeuvenBelgium
  3. 3.Dipartimento di Chimica dell’Università degli Studi di SalernoFisciano (SA)Italy

Personalised recommendations