Theoretical Chemistry Accounts

, Volume 117, Issue 1, pp 99–113 | Cite as

Unravelling Hot Spots: a comprehensive computational mutagenesis study

  • Irina S. Moreira
  • Pedro A. Fernandes
  • Maria J. RamosEmail author
Regular Article


As protein–protein interactions are critical for all biological functions, representing a large and important class of targets for human therapeutics, identification of protein–protein interaction sites and detection of specific amino acid residues that contribute to the specificity and strength of protein interactions is very important in the biochemistry field. Alanine scanning mutagenesis has allowed the discovery of energetically crucial determinants for protein association that have been defined as hot spots. Systematic experimental mutagenesis is very laborious and time-consuming to perform, and thus it is important to achieve an accurate, predictive computational methodology for alanine scanning mutagenesis, capable of reproducing the experimental mutagenesis values. Having as a basis the MM–PBSA approach first developed by Massova et al., we performed a complete study of the influence of the variation of different parameters, such as the internal dielectric constant, the solvent representation, and the number of trajectories, in the accuracy of the free energy binding differences. As a result, we present here a very simple and fast methodological approach that achieved an overall success rate of 82% in reproducing the experimental mutagenesis data.


MM–PBSA Molecular dynamics Alanine scanning mutagenesis Mutagenesis Free binding energy Hot spots 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

214_2006_151_MOESM1_ESM.pdf (633 kb)
Supplementary material


  1. 1.
    Arkin MR, Wells AJ (2004). Drug Discov 3:301–317CrossRefGoogle Scholar
  2. 2.
    Sharma SK, Ramsey TM, Bair KW (2002). Curr Med Chem Anticancer Agents 2:311–330CrossRefGoogle Scholar
  3. 3.
    Bogan AA, Thorn KS (1998). J Mol Biol 280:1–9CrossRefGoogle Scholar
  4. 4.
    Delano WL, Ultsch MH, de Vos AM, Wells JA (2000). Science 287:1279–1283CrossRefGoogle Scholar
  5. 5.
    Pons J, Rajpal A, Kirsch J (1999). Protein Sci 8:958–968Google Scholar
  6. 6.
    Keskin O, Ma B, Nussinov R (2005). J Mol Biol 345:1281–1294CrossRefGoogle Scholar
  7. 7.
    Arkin MR, Randal M, DeLano WL, Hyde J, Luong TN, Oslob JD, Raphael DR, Taylor L, Wang J, McDowell RS, Wells JA, Braisted A (2003). Proc Natl Acad Sci USA 100:1603–1608CrossRefGoogle Scholar
  8. 8.
    Gao Y, Wang R, Lia L (2004). J Mol Model 10:44–54CrossRefGoogle Scholar
  9. 9.
    Lopez MA, Kollman PA (1993). Protein Sci 2:1975–1986CrossRefGoogle Scholar
  10. 10.
    Kortemme T, Baker D (2002). Proc Natl Acad Sci USA 99:14116–14121CrossRefGoogle Scholar
  11. 11.
    Kortemme T, Kim DE, Baker D (2004). Sci STKE 219:12–15Google Scholar
  12. 12.
    Schapira M, Totrov M, Abagyan RJ (1999). Mol Recognit 12:177–190CrossRefGoogle Scholar
  13. 13.
    Aqvist J, Medina C, Samuelsson JE (1994). Protein Eng 7:385–391Google Scholar
  14. 14.
    Verkhivker GM, Bouzida D, Gehlhaar DK, Rejto PA, Freer ST, Rose PM (2002). Proteins 48:539–557CrossRefGoogle Scholar
  15. 15.
    Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE III (2000). Acc Chem Res 33:889–897CrossRefGoogle Scholar
  16. 16.
    Wang W, Donini O, Reyes CM, Kollman PA (2002). Annu Rev Biophys Biomol Struct 30:211–243CrossRefGoogle Scholar
  17. 17.
    Massova I, Kollman PA (1999). J Am Chem Soc 121:8133–8143CrossRefGoogle Scholar
  18. 18.
    Wang J, Morin P, Wang W, Kollman PA (2001). J Am Chem Soc 123:5221–5230CrossRefGoogle Scholar
  19. 19.
    Wang W, Kollman PA (2002). J Mol Biol 303:567–582CrossRefGoogle Scholar
  20. 20.
    Reyes CM, Kollman PA (2000). J Mol Biol 295:1–6CrossRefGoogle Scholar
  21. 21.
    Huo S, Massova I, Kollman PA (2002). J Comput Chem 23:15–27CrossRefGoogle Scholar
  22. 22.
    Mosyak L, Zhang Y, Glasfeld E, Haney S, Stahl M, Seehra J, Somers WS (2000). EMBO J 19:3179–3191CrossRefGoogle Scholar
  23. 23.
    Sauer-Eriksson AE, Kleywegt GJ, Uhlen M, Jones TA (1995). Structure 3:265–278CrossRefGoogle Scholar
  24. 24.
    Bhat TN, Bentley GA, Boulot G, Greene MI, Tello D, Dall’AcquaW, Souchon H, Schwarz FP, Mariuzza RA, Poljak RJ (1994). Proc Natl Acad Sci USA 9:1089–1093CrossRefGoogle Scholar
  25. 25.
    Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Wang B, Pearlman DA, Crowley M, Brozell S, Tsui V, Gohlke H, Mongan J, Hornak V, Cui G, Beroza P, Schafmeister C, Caldwell JW, Ross WS, Kollman PA (2004). AMBER 8 University of California, San FranciscoGoogle Scholar
  26. 26.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995). J Am Chem Soc 117:5179–5197CrossRefGoogle Scholar
  27. 27.
    Jorgensen WL, Chandrasekhar J, Madura J, Impey RW, Klein ML (1983). J Chem Phys 79:926–935CrossRefGoogle Scholar
  28. 28.
    Ryckaert JP, Ciccotti G, Berendsen HJ (1977). J Comput Phys 23:327–335CrossRefGoogle Scholar
  29. 29.
    Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984). J Chem Phys 81:3684–3690CrossRefGoogle Scholar
  30. 30.
    Case DA, Pearlman DA, Caldwell JW, Cheatham III TE, Ross WS, Simmerling CL, Darden TA, Merz KM, Stanton RV, Cheng AL, Vincent JJ, Crowley M, Tsui V, Radmer R J, Duan Y, Pitera J, Massova I, Seibel GL, Singh UC, Weiner PK, Kollman PA (1999). AMBER 6 University of California, San FranciscoGoogle Scholar
  31. 31.
    Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995). J Chem Phys 103:8577–8593CrossRefGoogle Scholar
  32. 32.
    Pastor RW, Brooks BR, Szabo A (1988). Mol Phys 65:1409–1419CrossRefGoogle Scholar
  33. 33.
    Loncharich RJ, Brooks BR, Pastor RW (1992). Biopolymers 32:523–535CrossRefGoogle Scholar
  34. 34.
    Izaguirre JA, Catarello DP, Wozniak JM, Skeel RD (2001). J Chem Phys 114:2090–2098CrossRefGoogle Scholar
  35. 35.
    Tsui V, Case DA (2001). Biopolymers (Nucl Acid Sci). 56:275–291CrossRefGoogle Scholar
  36. 36.
    Rocchia W, Sridharan S, Nicholls A, Alexov E, Chiabrera A, Honig B (2002). J Comput Chem 23:128–137CrossRefGoogle Scholar
  37. 37.
    Rocchia W, Alexov E, Honig B (2001). J Phys Chem B 105:6507–6514CrossRefGoogle Scholar
  38. 38.
    Sitkoff D, Sharp KA, Honig BJ (1994). Phys Chem 98:1978CrossRefGoogle Scholar
  39. 39.
    Moreira IS, Fernandes PA, Ramos MJ (2005). J Mol Struct (Theochem). 729:11–18CrossRefGoogle Scholar
  40. 40.
    Connolly ML (1983). J Appl Cryst 16:548–558CrossRefGoogle Scholar
  41. 41.
    Gao Y, Wang R, Lia L (2004). J Mol Model 10:44–54CrossRefGoogle Scholar
  42. 42.
    Xia B, Tsui V, Case DA, Dyson J, Wright PE (2002). J Biomol NMR 22:317–331CrossRefGoogle Scholar
  43. 43.
    Sheinerman FB, Norel R, Honig B (2000). Curr Opin Struct Biol 10:153–159CrossRefGoogle Scholar
  44. 44.
    Schutz CN, Warshel A (2001). Proteins 44:400–417CrossRefGoogle Scholar
  45. 45.
    Hsieh MJ, Luo R (2004). Proteins 56:475–486CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Irina S. Moreira
    • 1
  • Pedro A. Fernandes
    • 1
  • Maria J. Ramos
    • 1
    Email author
  1. 1.REQUIMTE/Departamento de QuímicaFaculdade de Ciências da Universidade do PortoPortoPortugal

Personalised recommendations