Skip to main content
Log in

Probing the structural effects on the intrinsic electronic and redox properties of [2Fe–2S]+ clusters, a broken-symmetry density functional theory study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In biological electron transport chains, [2Fe–2S] clusters have versatile electrochemical properties and serve as important electron carriers in a wide variety of biological processes. To understand structural effects on the variation in reduction potentials in [2Fe–2S] proteins, a series of [2Fe–2S] protein analogs with bidentate ligands ( − SC 2 H 4 NH 2) were recently produced by collision-induced dissociation of [Fe 4 S 4(L)4]2− (L  =  SC 2 H 4 NH 2). Combined with photoelectron spectroscopy findings, the reaction mechanisms of [Fe 4 S 4(L)4]2− to [Fe 2 S 2(L)2] and the structural effects of ligands on the electronic and redox properties of the [2Fe–2S] clusters are investigated here using broken-symmetry density functional theory method. Our calculations suggest that [Fe 2 S 22 − L)(cis − L)] and [Fe 2 S 22 − L)2] are the experimentally observed [2Fe–2S] products, which are generated via a fission process of [Fe 4 S 4(L)4]2− followed by rearrangement of ligands of [Fe 2 S 2(L)2]. Moreover, structural variation of the ferrous center may dramatically affect the oxidation energy of the [2Fe–2S] clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Beinert H, Holm RH, Munck E (1997). Science 277:653

    Article  CAS  Google Scholar 

  2. Palmer G (1973) Current insight into the active center of spinach ferredoxin and other iron–sulfur proteins. In: Lovenberg W (ed) iron–sulfur protein Academic, vol II. New York, 285

  3. Spiro TG, (ed) (1982) Iron–sulfur proteins, vol IV. Wiley-Interscience, New York

    Google Scholar 

  4. Cammack R (1992). Adv Inorg Chem 38:281

    CAS  Google Scholar 

  5. Beinert H (2000). J Biol Inorg Chem 5:2

    Article  CAS  Google Scholar 

  6. Wang LS (2001) Clusters. In: Moore JH, Spencer ND (eds) Encyclopedia of chemical physics and physical chemistry, vol III. IOP Publishing, Philadelphia, Vol. III, pp 2113

    Google Scholar 

  7. Bertini I, Ciurli S, Luchinat C (1995) The electronic structure of FeS centers in proteins and models: a contribution to the understanding of their electron transfer properties. In: Clarke MJ, Goodenough JB, Jørgensen CK, Mingos DMP, Neilands JB, Palmer GA, Sadler PJ, Weiss R (eds) structure and bonding, vol 83. Springer, Berlin Heidelberg New York, p 1

    Google Scholar 

  8. Link TA (1999). Adv Inorg Chem 47:83

    Article  CAS  Google Scholar 

  9. Leggate EJ, Hirst J (2005). Biochemistry 44:7048

    Article  CAS  Google Scholar 

  10. Rose K, Shadle SE, Glaser T, de Vries S, Cherepanov A, Canters GW, Hedman B, Hodgson KO, Solomon EI (1999). J Am Chem Soc 121:2353

    Article  CAS  Google Scholar 

  11. Ullmann GM, Noodleman L, Case DA (2002). J Biol Inorg Chem 7:632

    Article  CAS  Google Scholar 

  12. Ullmann GM, Noodleman L, Case DA (2001). J Inorg Biochem 86:464

    Google Scholar 

  13. Klingen AR, Ullmann GM (2004). Biochemistry 43:12383

    Article  CAS  Google Scholar 

  14. Yang X, Wang XB, Niu S, Pickett CJ, Ichiye T, Wang LS (2002). Phys Rev Lett 89:163401

    Article  CAS  Google Scholar 

  15. Niu SQ, Wang XB, Yang X, Wang LS, Ichiye T (2004). J Phys Chem A 108:6750

    Article  CAS  Google Scholar 

  16. Fu YJ, Niu S, Ichiye T, Wang LS (2005). Inorg Chem 44:1202

    Article  CAS  Google Scholar 

  17. Mouesca JM, Lamotte B (1998). Coord Chem Rev 180:1573

    Article  Google Scholar 

  18. Levine IN (2000) Quantum chemistry, 5th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  19. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  20. Becke AD (1988). Phys Rev A38:3098

    Article  CAS  Google Scholar 

  21. Becke AD (1993). J Chem Phys 98:1372

    Article  CAS  Google Scholar 

  22. Becke AD (1993). J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  23. Lee C, Yang W, Parr RG (1988). Phys Rev B37:785

    Article  CAS  Google Scholar 

  24. Rassolov V, Pople JA, Ratner M, Windus TL (1998). J Chem Phys 109:1223

    Article  CAS  Google Scholar 

  25. Francl MM, Petro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982). J Chem Phys 77:3654

    Article  CAS  Google Scholar 

  26. Hariharan PC, Pople JA (1973). Theor Chim Acta 28:213

    Article  CAS  Google Scholar 

  27. Simons J, Joergensen P, Taylor H, Ozment J (1983). J Phys Chem 87:2745

    Article  CAS  Google Scholar 

  28. Banerjee A, Adams N, Simons J, Shepard R (1985). J Phys Chem-Us 89:52

    Article  CAS  Google Scholar 

  29. Noodleman L, Peng CY, Case DA, Mouesca JM (1995). Coord Chem Rev 144:199

    Article  CAS  Google Scholar 

  30. Noodleman L (1981). J Chem Phys 74: 5737

    Article  CAS  Google Scholar 

  31. Wang XB, Niu SQ, Yang X, Ibrahim SK, Pickett CJ, Ichiye T, Wang LS (2003). J Am Chem Soc 125:14072

    Article  CAS  Google Scholar 

  32. Wang XB, Wang LS (2000). J Chem Phys 112:6959

    Article  CAS  Google Scholar 

  33. Niu SQ, Wang XB, Nichols JA, Wang LS, Ichiye T (2003). J Phys Chem A 107:2898

    Article  CAS  Google Scholar 

  34. Niu S, Nichols JA, Ichiye T (in preparation)

  35. Yang X, Wang XB, Wang LS, Niu SQ, Ichiye T (2003). J Chem Phys 119:8311

    Article  CAS  Google Scholar 

  36. Straatsma TP, Aprà E, Windus TL, Bylaska EJ, de Jong W, Hirata S, Valiev M, Hackler M, Pollack L, Harrison R, Dupuis M, Smith DMA, Nieplocha J, Tipparaju V, Krishnan M, Auer AA, Brown E, Cisneros G, Fann G, Früchtl H, Garza J, Hirao K, Kendall R, Nichols J, Tsemekhman K, Wolinski K, Anchell J, Bernholdt D, Borowski P, Clark T, Clerc D, Dachsel H, Deegan M, Dyall K, Elwood D, Glendening E, Gutowski M, Hess A, Jaffe J, Johnson B, Ju J, Kobayashi R, Kutteh R, Lin Z, Littlefield R, Long X, Meng B, Nakajima T, Niu S, Rosing M, Sandrone G, Stave M, Taylor H, Thomas G, van Lenthe J, Wong A, Zhang Z (2004) NWChem, a computational chemistry package for parallel computers, version 4.6. Pacific Northwest National Laboratory, Richland

    Google Scholar 

  37. Kendall RA, Apra E, Bernholdt DE, Bylaska EJ, Dupuis M, Fann GI, Harrison RJ, Ju JL, Nichols JA, Nieplocha J, Straatsma TP, Windus TL, Wong AT (2000). Comput Phys Commun 128:260

    Article  CAS  Google Scholar 

  38. Black G, Didier B, Elsethagen T, Feller D, Gracio D, Hackler M, Havre S,Jones D, Jurrus E, Keller T, Lansing C, Matsumoto S, Palmer B, Peterson M, Schuchardt K, Stephan E, Taylor H, Thomas G, Vorpagel E, Windus T, Winters C (2004) Ecce, a problem solving environment for computational chemistry, software version 321. Pacific Northwest National Laboratory, Richland

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiko Ichiye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, S., Ichiye, T. Probing the structural effects on the intrinsic electronic and redox properties of [2Fe–2S]+ clusters, a broken-symmetry density functional theory study. Theor Chem Acc 117, 275–281 (2007). https://doi.org/10.1007/s00214-006-0136-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-006-0136-y

Keywords

Navigation