Skip to main content
Log in

Theoretical Study of the Distortion from Regular Tetrahedral Structure of M(NH2)4 Complexes

  • Regular Issue
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Theoretical study on tetrakis-amido complexes (M(NR2)4, M = Ti, V, Cr, and Mo; R = H, Me) is presented. At first a rough investigation of the potential energy surface indicates that all stationary points are of S 4 or D 2 symmetry depending on the coupled rotations of the NR2 groups. Qualitative correlation diagrams are calculated within S 4 or D 2 symmetry constraint between two limiting structures of D 2 d symmetry. DFT (B3LYP) calculations on these two paths are presented for unsubstituted complexes (R = H) and the various minima are optimized and characterized. These results are discussed in the light of the correlation diagrams. Finally, optimization of the different minima has been performed on substituted species (R = Me) and the theoretical results are shown to be in good agreement with the experimental structural determination when available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bock H, Borrmann H, Havlas Z, Oberhammer H, Ruppert K, Simon A (1991). Angew Chem Int Ed Engl 30:1678

    Article  Google Scholar 

  2. Bruckmann J, Krüger C, Borrmann H, Simon A, Bock H (1995). Zeitschriftfür Kristallographie 210:521

    Article  CAS  Google Scholar 

  3. Fleurat-Lessard P, Volatron F (1998). J Phys Chem A 102:10151

    Article  CAS  Google Scholar 

  4. Fleurat-Lessard P, Volatron F (2000). Inorg Chem 39:1849

    Article  CAS  Google Scholar 

  5. Palacio AA, Alemany P, Alvarez S (1999). Inorg Chem 38:707

    Article  Google Scholar 

  6. Bradley DC, Chisholm MH (1976). Acc Chem Res 9:273

    Article  CAS  Google Scholar 

  7. Hagen K, Holwill CJ, Rice DA, Runnacles JD (1988). Inorg Chem 27:2032

    Article  CAS  Google Scholar 

  8. Haaland A, Rypdal K, Volden HV, Andersen RA (1992). J Chem Soc Dalton Trans 891

  9. Chisholm MH, Cotton FA, Extine MW (1978). Inorg Chem 17:1329

    Article  CAS  Google Scholar 

  10. Dubberley SR, Tyrell BR, Mountford P (2001). Acta Cryst C57:902

    Article  CAS  Google Scholar 

  11. Chisholm MH, Cowley AH, Lattman M (1980). J Am Chem Soc 102:46

    Article  CAS  Google Scholar 

  12. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochtersky J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liaschenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (1998). Gaussian 98, Revision A. 1, Gaussian, Inc., Pittsburgh PA

  13. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003). Gaussian 03, Revision B.04 Gaussian, Inc., Pittsburgh PA

  14. Ehlers AW, Böhme M, Dapprich S, Gobbi A, Höllwarth A, Jonas V, Köhler KF, Stegmann R, Veldkamp A, Frenking, G (1993). Chem Phys Lett 208:111

    Article  CAS  Google Scholar 

  15. Titanium orbitals parameters are taken from: Lauher JW, Hoffmann, R (1976). J Am Chem Soc 98:1729

    Google Scholar 

  16. Baboul AG, Schlegel, HB (1998). J Phys Chem B 102:5152

    Article  CAS  Google Scholar 

  17. We were not able to locate the 2 A structures at large angles (α > 50°) as well as 2 B structures at small angles (α < 20°).

  18. For sake of simplicity, we use the terms of D 2 symmetry. The 3 B 2configuration in D 2d group becomes the 3 B 1 configuration in D 2 group

  19. In the Min D 2 structure for singlet Molybdenum, the optimal α value is exactly equal to 30° and this geometry is strictly equivalent to a D 2d 90 structure. For the sake of comparison with the experimental data, the geometrical parameters of this D 2 minimum are given as a D 2d 90 complex

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Volatron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleurat-Lessard, P., Volatron, F. Theoretical Study of the Distortion from Regular Tetrahedral Structure of M(NH2)4 Complexes. Theor Chem Acc 116, 718–725 (2006). https://doi.org/10.1007/s00214-006-0118-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-006-0118-0

Keywords

Navigation