Skip to main content
Log in

Effective Hamiltonian Approach for Strongly Correlated Systems

  • Regular Issue
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We demonstrate the utility of effective Hamilonians for studying extended correlated systems, such as quantum spin systems. After defining local relevant degrees of freedom, the numerical contractor renormalization (CORE) method is applied in two steps (i) building an effective Hamiltonian with longer ranged interactions up to a certain cut-off using the CORE algorithm and (ii) solving this new model numerically on finite clusters by exact diagonalization and performing finite-size extrapolations to obtain results in the thermodynamic limit. This approach, giving complementary information to analytical treatments of the CORE Hamiltonian, can be used as a semi-quantitative numerical method. For ladder type geometries, we explicitly check the accuracy of the effective models by increasing the range of the effective interactions until reaching convergence. Our results in the perturbative regime and also away from it are in good agreement with previously established results. In two dimensions we consider the plaquette lattice and the kagomé lattice as non-trivial test cases for the numerical CORE method. As it becomes more difficult to extend the range of the effective interactions in two dimensions, we propose diagnostic tools (such as the density matrix of the local building block) to ascertain the validity of the basis truncation. On the plaquette lattice we have an excellent description of the system in both the disordered and the ordered phases, thereby showing that the CORE method is able to resolve quantum phase transitions. On the kagomé lattice we find that the previously proposed twofold degenerate S=1/2 basis can account for a large number of phenomena of the spin 1/2 kagomé system. In general, we are able to simulate system sizes which correspond to an 8× 8 lattice for the plaquette lattice or a 48-site kagomé lattice, which are beyond the possibilities of a standard exact diagonalization approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al Hajj M, Guihéry N, Malrieu J-P, Wind P (2004). Phys Rev B 70:094415

    Article  Google Scholar 

  2. Morningstar CJ, Weinstein M (1994). Phys Rev Lett 73:1873

    Article  CAS  Google Scholar 

  3. Morningstar CJ, Weinstein M (1996). Phys Rev D 54:4131

    Article  CAS  Google Scholar 

  4. Weinstein M (2001). Phys Rev B 63:174421

    Article  Google Scholar 

  5. Altman E, Auerbach A (2002). Phys Rev B 65:104508

    Article  Google Scholar 

  6. Berg E, Altman E, Auerbach A (2003). Phys Rev Lett 90:147204

    Article  Google Scholar 

  7. Piekarewicz J, Shepard JR (1997). Phys Rev B 56:5366

    Article  CAS  Google Scholar 

  8. Piekarewicz J, Shepard JR (1998). Phys Rev B 57:10260

    Article  CAS  Google Scholar 

  9. Capponi S, Poilblanc D (2002). Phys Rev B 66:180503(R)

    Article  Google Scholar 

  10. Malrieu J-P, Guihéry N (2001). Phys Rev B 63:085110

    Article  Google Scholar 

  11. Capponi S, Läuchli A, Mambrini M (2004). Phys Rev B

  12. Laughlin RB, Pines D (2000). Proc Nat Acad Sci 97:28 (see the discussion and references).

    Article  CAS  Google Scholar 

  13. Dagotto E, Rice TM (1996). Science 271:618 and references therein

    Article  CAS  Google Scholar 

  14. Barnes T, Dagotto E, Riera J, Swanson ES (1993). Phys Rev B 47:3196

    Article  CAS  Google Scholar 

  15. White SR, Noack RM, Scalapino DJ (1994). Phys Rev Lett 73:886

    Article  CAS  Google Scholar 

  16. Frischmuth B, Ammon B, Troyer M (1996). Phys Rev B 54: R3714

    Article  CAS  Google Scholar 

  17. Greven M, Birgeneau RJ, Wiese U-J (1996). Phys Rev Lett 77:1865

    Article  CAS  Google Scholar 

  18. Kawano K, Takahashi M (1997). J Phys Soc Jpn 66:4001

    Article  CAS  Google Scholar 

  19. Cabra DC, Honecker A, Pujol P (1998). Phys Rev B 58:6241

    Article  CAS  Google Scholar 

  20. Martin T, Montambaux G, Trân Thanh Vân J (eds). (1996). In: Proceedings of the XXXIst Rencontres de Moriond, Frontières, Gif-sur-Yvette, France (cond-mat/9605075).

  21. Lieb E, Schultz T, Mattis D (1961). Ann Phys 16:407

    Article  Google Scholar 

  22. Affleck I (1988). Phys Rev B 37:5186

    Article  Google Scholar 

  23. Koga A, Kumada S, Kawakami N (1999). J Phys Soc Jpn 68:642

    Article  CAS  Google Scholar 

  24. Koga A, Kumada S, Kawakami N (1999). J Phys Soc Jpn 68:2373

    Article  CAS  Google Scholar 

  25. Läuchli A, Wessel S, Sigrist M (2002). Phys Rev B 66:014401

    Article  Google Scholar 

  26. Voigt A (2002). Comput Phys Commun 146:125

    Article  CAS  Google Scholar 

  27. Leung PW, Elser V (1993). Phys Rev B 47:5459

    Article  Google Scholar 

  28. Lecheminant P, Bernu B, Lhuillier C, Pierre L, Sindzingre P (1997). Phys Rev B 56:2521

    Article  CAS  Google Scholar 

  29. Waldtmann C, Everts H-U, Bernu B, Lhuillier C, Sindzingre P, Lecheminant P, Pierre L (1998). Eur Phys J B 2:501

    Article  CAS  Google Scholar 

  30. Mila F (1998). Phys Rev Lett 81:2356

    Article  CAS  Google Scholar 

  31. Mambrini M, Mila F (2000). Eur Phys J B 17:651

    Article  CAS  Google Scholar 

  32. Subrahmanyam V (1995). Phys Rev B 52:1133

    Article  CAS  Google Scholar 

  33. Raghu C, Rudra I, Ramasesha S, Sen D (2000). Phys Rev B 62:9484

    Article  CAS  Google Scholar 

  34. Bernu B, Lhuillier C, Pierre L (1992). Phys Rev Lett 69:2590

    Article  Google Scholar 

  35. Sindzingre P, Lhuillier C, Fouet JB (2003). Int J Mod Phys B 17:5031 (cond-mat/0110283)

    Article  CAS  Google Scholar 

  36. Calandra M, Sorella S (2000). Phys Rev B 61:R11894

    Article  CAS  Google Scholar 

  37. Capriotti L (2001). Int J Mod Phys B 15:1799

    Article  Google Scholar 

  38. Limot L, Mendels P, Collin G, Mondelli C, Ouladdiaf B, Mutka H, Blanchard N, M. Mekata M (2002). Phys Rev B 65:144447 and references therein

    Article  Google Scholar 

  39. Budnik R, Auerbach A (2004). Phys Rev Lett 93:187205

    Article  Google Scholar 

  40. Budnik R, M.Sc. thesis, Technion, Haifa (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Capponi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capponi, S. Effective Hamiltonian Approach for Strongly Correlated Systems. Theor Chem Acc 116, 524–534 (2006). https://doi.org/10.1007/s00214-006-0090-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-006-0090-8

PACS

Navigation