Advertisement

Theoretical Chemistry Accounts

, Volume 114, Issue 4–5, pp 259–264 | Cite as

On the application of the incremental scheme to ionic solids: test of different embeddings

  • Elena Voloshina
  • Beate Paulus
Article

Abstract

Within the application of the incremental scheme to cerium dioxide high-level quantum chemical calculations, using the coupled-cluster approach, have been performed for (Ce4+) m (O2−) n clusters. Two different approaches were considered. In the first one all increments were obtained from the nearly neutral Ce4O7-cluster. In the second approach different clusters were used for the evaluation of increments. Several embeddings were tested: from purely point charges up to pseudopotential-surrounding of oxygens to imitate the Ce-ions. The advantages and disadvantages of applied embedding schemes were discussed.

Keywords

ab initio calculations Electron-correlation calculations Embedded cluster calculation Incremental scheme 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kohn W (1999) Rev Mod Phys 71:1253Google Scholar
  2. 2.
    Pisani C, Dovesi R, Roetti C (1988) Hartree-Fock ab initio treatment of crystalline systems. In: Berthier G, Dewar MJS, Fischer H, Fukui K, Hall GG, Hinze J, Jaffé HH, Jonrtner J, Kutzelnigg W, Ruedenberg K, Tomas J (eds) Lecture notes in chemistry, vol 8. Springer, Berlin Heidelberg New YorkGoogle Scholar
  3. 3.
    Stoll H (1992) Phys Rev B 46:6700Google Scholar
  4. 4.
    MOLPRO is a package of ab initio programs written by Werner HJ, Knowles PJ, with contribution from Almlöf J, Amos RD, Deegan MJO, Eckert F, Elbert ST, Hampel C, Meyer W, Nicklass A, Peterson K, Pitzer RM, Stone AJ, Taylor PR, Mura ME, Pulay P, Schuetz M, Stoll H, Thorsteinsson T, Cooper DLGoogle Scholar
  5. 5.
    Stoll H (1992) J Chem Phys 97:8449Google Scholar
  6. 6.
    Paulus B, Shi F-J, Stoll H (1997) J Phys Cond Mater 9:2745Google Scholar
  7. 7.
    Paulus B, Fulde P, Stoll H (1996) Phys Rev B 54:2556Google Scholar
  8. 8.
    Kalvoda S, Paulus B, Fulde P, Stoll H (1997) Phys Rev B 55:4027Google Scholar
  9. 9.
    Doll K, Stoll H (1997) Phys Rev B 56:10121Google Scholar
  10. 10.
    Doll K, Dolg M, Fulde P, Stoll H (1995) Phys Rev B 52:4842Google Scholar
  11. 11.
    Doll K, Dolg M, Stoll H (1996) Phys Rev B 54:13529Google Scholar
  12. 12.
    Doll K, Dolg M, Fulde P, Stoll H (1997) Phys Rev B 55:10282Google Scholar
  13. 13.
    Kalvoda S, Dolg M, Flad HJ, Fulde P, Stoll H (1998) Phys Rev B 57:2127Google Scholar
  14. 14.
    Trovarelli A (1996) Catal Rev Sci Eng 38:439Google Scholar
  15. 15.
    Coleman WJ (1974) Appl Opt 13:946Google Scholar
  16. 16.
    Sundaram KB, Wahid PF, Sisk PJ (1992) Thin Solid Films 221:13Google Scholar
  17. 17.
    Beie H-J, Gnrich A (1991) Sens Actuators B 4:393Google Scholar
  18. 18.
    Zicovich-Wilson CM, Dovesti R, Saunders VR (2001) J Chem Phys 115:9708Google Scholar
  19. 19.
    Shukla A, Dolg M, Stoll H, Fulde P (1996) Chem Phys Lett 262:213Google Scholar
  20. 20.
    Shukla A, Dolg M, Fulde P, Stoll H (1999) Phys Rev B 60:5211Google Scholar
  21. 21.
    Wuilloud E, Delley B, Schneider WD, Baer Y (1984) Phys Rev Lett 53:202Google Scholar
  22. 22.
    Skorodumova NV, Ahuja R, Simak SI, Abrikosov IA, Johansson B, Lundqvist BI (2001) Phys Rev B 64:115108Google Scholar
  23. 23.
    Wyckoff RWG (1963) Crystal Structures, 2nd edn. Interscience, New YorkGoogle Scholar
  24. 24.
    Dolg M, Fulde P, Küchle W, Neumann C-S, Stoll H (1991) J Chem Phys 94:3011Google Scholar
  25. 25.
    We added one s, p, d and fs = 0.010920, αp = 0.012178, αd=0.027009, αf=0.103158, respectively) exponents and two g exponents (0.82 and 0.34)Google Scholar
  26. 26.
    Dunning TH Jr (1989) J Chem Phys 98:1007Google Scholar
  27. 27.
    Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796Google Scholar
  28. 28.
    Ross RB, Gayen S, Ermler WC (1994) J Chem Phys 100:8145Google Scholar
  29. 29.
    Bartlett RC (1989) J Phys Chem 93:1697Google Scholar
  30. 30.
    Paldus J (1992) Coupled cluster theory. In: Wilson S, Diercksen GHF (eds) Methods in computational physics. Plenum Press, New York, p 99Google Scholar
  31. 31.
    Pipek J, Mezey PG (1989) J Chem Phys 90:4916Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Max-Planck-Institut für Physik komplexer SystemeDresdenGermany

Personalised recommendations