Skip to main content
Log in

Vibrational spectrum of BiH3: Six-dimensional variational calculations on high-level ab initio potential energy surfaces

  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We report a theoretical study of the ground electronic state of BiH3. The potential energy surface (PES) is obtained from coupled cluster CCSD(T) calculations with a large basis set (289 contracted Gaussian functions). The previously available quartic force field (P4) is extended by adding the dominant quintic and sextic stretching terms to yield improved potential functions in symmetry coordinates (P6) and Morse-type coordinates (M4). Second-order rovibrational perturbation calculations on the P4-PES and full variational calculations on the P6-PES and M4-PES yield almost identical vibrational term values which is rationalized by considering the local mode behavior of BiH3 and the Morse-type character of the M4-PES. The remaining deviations between the computed and observed vibrational term values must thus be caused by imperfections in the CCSD(T) surface. A refinement of this ab initio surface by a restrained fit to experimental data allows an essentially perfect reproduction of the observed vibrational term values. Variational calculations on this refined surface provide predictions for several overtone and combination bands that have not yet been observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jerzembeck W, Bürger H, Constantin L, Margulès L, Demaison J, Breidung J, Thiel W (2002) Angew Chem, Int Ed 41:2550

    Google Scholar 

  2. Jerzembeck W, Bürger H, Constantin FL, Margulès L, Demaison J (2004) J Mol Spectrosc 226:24

    Google Scholar 

  3. Jerzembeck W, Bürger H, Breidung J, Thiel W (2004) J Mol Spectrosc 226:32

    Google Scholar 

  4. Jerzembeck W, Bürger H, Hänninen V, Halonen L (2004) J Chem Phys 120:5650

    Google Scholar 

  5. Breidung J, Thiel W, Figgen D, Stoll H (2004) J Chem Phys 120:10404

    Google Scholar 

  6. Purvis GD, Bartlett RJ (1982) J Chem Phys 76:1910

  7. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479

    Google Scholar 

  8. Metz B, Stoll H, Dolg M (2000) J Chem Phys 113:2563

    Google Scholar 

  9. Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96:6796

    Google Scholar 

  10. Yurchenko SN, Carvajal M, Jensen P, Lin H, Zheng JJ, Thiel W (2005) Mol Phys 103:359

    Google Scholar 

  11. Yurchenko SN, Carvajal M, Thiel W, Lin H, Jensen P (2005) Adv Quant Chem 48:209

    Google Scholar 

  12. Yurchenko SN, Carvajal M, Lin H, Zheng JJ, Thiel W, Jensen P (2005) J Chem Phys 122:104317

    Google Scholar 

  13. Hougen JT, Bunker PR, Johns JWC (1970) J Mol Spectrosc 34:136

    Google Scholar 

  14. Lin H, Thiel W, Yurchenko SN, Carvajal M, Jensen P (2002) J Chem Phys 117:11265

    Google Scholar 

  15. Schwerdtfeger P, Laakkonen LJ, Pykkö P (1992) J Chem Phys 96:6807

    Google Scholar 

  16. Eckart C (1935) Phys Rev 47:552

  17. Sayvetz A (1939) J Chem Phys 7:383

    Google Scholar 

  18. Botschwina P (1979) Chem Phys 40:33

  19. Botschwina P (1982) Chem Phys 68:41

  20. Werner H-J, Knowles PJ, MOLPRO, versions 2002.3 and 2002.6, a package of ab initio programs, written with contributions from Amos RD, Bernhardsson A, Berning A Celani P, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Hampel C, Hetzer G, Knowles PJ, Korona T, Lindh R, Lloyd AW, McNicholas SJ, Manby FR, Meyer W, Mura ME, Nicklass A, Palmieri P, Pitzer R, Rauhut G, Schütz M, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Werner H-J

  21. Hampel C, Peterson K, Werner H-J (1992) Chem Phys Lett 190:1 and references therein. The program to compute the perturbative triples corrections has been developed by Deegan MJO, Knowles PJ (1994) ibid 227:321

  22. Mills IM, Robiette AG (1985) Mol Phys 56:743

  23. Halonen L, Robiette AG (1986) J Chem Phys 84:6861

    Google Scholar 

  24. Kállay M, Gauss J (2004) J Chem Phys 120:6841

    Google Scholar 

  25. Rajamäki T, Kállay M, Noga J, Valiron P, Halonen L (2004) Mol Phys 102:2297

  26. Yurchenko SN, Carvajal M, Jensen P, Herregodts F, Huet TR (2003) Chem Phys 290:59

  27. Yurchenko SN, Thiel W, Patchkovskii S, Jensen P (2005) Phys Chem Chem Phys 7:573

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Thiel.

Additional information

Dedicated to Hermann Stoll on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yurchenko, S., Breidung, J. & Thiel, W. Vibrational spectrum of BiH3: Six-dimensional variational calculations on high-level ab initio potential energy surfaces. Theor Chem Acc 114, 333–340 (2005). https://doi.org/10.1007/s00214-005-0687-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-005-0687-3

Keywords

Navigation