Theoretical Chemistry Accounts

, Volume 114, Issue 1–3, pp 159–168

Multipole electrostatic model for MNDO-like techniques with minimal valence spd-basis sets

Article

Abstract

We report an implementation of an atomic multipole model (up to quadrupole) for calculating the electrostatic properties of molecules based on electron densities derived from MNDO-like NDDO-based semiempirical MO calculations with minimal s,p,d valence basis sets. The results were validated by a comparison of the calculated values of the molecular electrostatic potential with those obtained from fine grain numerical integrations (both with AM1*), B3LYP/6–31G(d) and MP2/6–31G(d). The DFT and ab initio potentials can be reproduced remarkably well (mean unsigned error <2 kcal mol−1 e−1) using simple linear regression equations to correct the AM1* (multipole) results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stone AJ (2002) The theory of intermolecular forces, chapter 2. Clarendon Press, Oxford, p 12Google Scholar
  2. 2.
    Politzer P, Murray JS (1998) Molecular electrostatic potentials and chemical reactivity. In: Lipkowitz K, Boyd RB (eds), Rev Comput Chem, vol 2. VCH, New York pp 273–312Google Scholar
  3. 3.
    Murray JS, Politzer P (2003) The use of the molecular electrostatic potential in medicin chemistry. In: Carloni P, Alber F, Mannhold R, Kubinyi H, Folkers G (eds), Quantum medicinal chemistry, vol 17. Wiley-VCH, New York pp 233–254Google Scholar
  4. 4.
    Ehresmann B, de Groot MJ, Alex A, Clark T (2004) J Chem Inf Comput Sci 43:658–668Google Scholar
  5. 5.
    Podlipnik Č, Koller J (1998) Croat Chem Acta 71:689–696Google Scholar
  6. 6.
    Reynolds CA, Richards WG, Goodford PJ (1988) J Chem Soc Perkin Trans II, pp 551–556Google Scholar
  7. 7.
    Miertus S, Scrocco E, Tomasi J (1981) J Chem Soc Perkin Trans pp 1439–1443Google Scholar
  8. 8.
    Wong MW, Frisch MJ, Wiberg KB (1991) J Am Chem Soc 113:4776–4782Google Scholar
  9. 9.
    Rauhut G, Clark T, Steinke T (1993) J Am Chem Soc 115:9174–9181Google Scholar
  10. 10.
    Zou J, Yu Y, Shang Z (2001) J Chem Soc Perkin Trans pp 1439–1443Google Scholar
  11. 11.
    Dewar MJS, Thiel W (1977) J Am Chem Soc 99:4899–4907Google Scholar
  12. 12.
    Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909Google Scholar
  13. 13.
    Stewart JJP (1989) J Comput Chem 10:209–220Google Scholar
  14. 14.
    Beck B, Horn A, Carpenter J, Clark T (1998) J Chem Inf Comput Sci 38:1214–1217Google Scholar
  15. 15.
    Rein R (1973) Adv Quantum Chem 7:335–396Google Scholar
  16. 16.
    Merz KM, Besler BH (1990) QCPE Bull 10:15Google Scholar
  17. 17.
    Reynolds CA, Ferenczy GG, Richards WG (1992) J Mol Struct (Theochem) 256:249–269Google Scholar
  18. 18.
    Parr RG (1960) J Chem Phys 33:1184–1199Google Scholar
  19. 19.
    Ford GP, Wang B (1993) Ab Initio hf/6-31g* results. J Comput Chem 14:1101–1111Google Scholar
  20. 20.
    Bakowies D, Thiel W (1996) J Comput Chem 17:87–108Google Scholar
  21. 21.
    Dewar MJS, Thiel W (1977) Theor Chim Acta 46:89–104Google Scholar
  22. 22.
    Rauhut G, Clark T (1993) J Comput Chem 14:503–509Google Scholar
  23. 23.
    Beck B, Rauhut G, Clark T (1994) J Comput Chem 15:1064–1073Google Scholar
  24. 24.
    Göller AH, Horn AHC, Clark T (unpublished)Google Scholar
  25. 25.
    Horn AHC (2004) PhD Thesis, Friedrich-Alexander-Universität Erlangen-NürnbergGoogle Scholar
  26. 26.
    Löwdin PO (1995) Phys Rev 97:1474–1489 DOI 10.1103 Phys Rev 971490Google Scholar
  27. 27.
    Gedeck P, Schindler T, Alex A, Clark T (2000) J Mol Model 6:452–466Google Scholar
  28. 28.
    Thiel W, Voityuk AA (1992) Theor Chim Acta 81:391–404Google Scholar
  29. 29.
    Thiel W, Voityuk AA (1996) Theor Chim Acta 93:315Google Scholar
  30. 30.
    Pople JA, Beveridge DL (1970) Approximate molecular orbital theory. McGraw-Hill, New YorkGoogle Scholar
  31. 31.
    Roothaan CCJ (1951) J Chem Phys 19:1445–1458Google Scholar
  32. 32.
    Pople JA, Santry DP (1965) J Chem Phys 43:S129–S135Google Scholar
  33. 33.
    Klopman G (1964) J Am Chem Soc 86:4550–4557Google Scholar
  34. 34.
    Stone AJ (2002) The theory of intermolecular forces, chapter 2. Clarendon Press, Oxford pp 12–18Google Scholar
  35. 35.
    Stone AJ (2002) The theory of intermolecular forces, chapter 3. Clarendon Press, Oxford pp 36–38Google Scholar
  36. 36.
    Clark T, Alex A, Beck B, Burkhardt F, Chandrasekhar J, Gedeck P, Horn AHC, Hutter M, Martin B, Rauhut G, Sauer W, Schindler T, Steinke T (2004) Vamp 8.1. ErlangenGoogle Scholar
  37. 37.
    Winget P, Horn AHC, Selçuki C, Martin B, Clark T (2003) J Mol Model 9:408–414Google Scholar
  38. 38.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627Google Scholar
  39. 39.
    Becke AD (1996) J Chem Phys 104:1040–1046Google Scholar
  40. 40.
    Møller C, Plesset MS (1934) Phys Rev 46:618–622Google Scholar
  41. 41.
    Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503–506Google Scholar
  42. 42.
    Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:275–280Google Scholar
  43. 43.
    Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:281–289Google Scholar
  44. 44.
    Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269Google Scholar
  45. 45.
    Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261Google Scholar
  46. 46.
    McLean AD, Chandler GS (1980) J Chem Phys 72:5639–5648Google Scholar
  47. 47.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283Google Scholar
  48. 48.
    Wadt WR, Hay PJ (1985) J Chem Phys 82:284–298Google Scholar
  49. 49.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310Google Scholar
  50. 50.
    Extra polarization functions consisted of one unscaled Gaussian with the following Gaussian exponents α for each function type (``shell''): Mo: p function, αp=1; f function, αf=0.072; all prefactors were set to 1.0Google Scholar
  51. 51.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.03. Gaussian, Inc., PittsburghGoogle Scholar
  52. 52.
    Carbo R, Leyda L, Arnau M (1980) Int J Quant Chem 17:1185–1189Google Scholar
  53. 53.
    Hodgkin EE, Richards GW (1987) Int J Quant Chem 14:105–110Google Scholar
  54. 54.
    Winget P, Selçuki C, Horn AHC, Martin B, Clark T (2003) Theor Chem Acc 110:254–266Google Scholar
  55. 55.
    Beck B, Glenn RC, Clark T (1995) J Mol Model 1:176–187Google Scholar
  56. 56.
    Beck B, Glenn RC, Clark T (1997) J Comput Chem 18:744–756Google Scholar
  57. 57.
    Klamt A, Schüürmann G (1993) J Chem Soc Perkin Trans 2, pp 799–805Google Scholar
  58. 58.
    Andzelm J, Kölmel C, Klamt A (1995) J Chem Phys 103:9312–9320Google Scholar
  59. 59.
    Klamt A In Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF, III, Schreiner PR, editors, Encyclopedia of Computational Chemistry, volume 1, pages 604–615. Wiley, Chichester, UK, 1998Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Computer-Chemie-CentrumFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.Bioinformatik, Institut für BiochemieFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations