Skip to main content
Log in

Transition metal complexes with open d-shell in semiempirical context. Application to analysis of Mössbauer data on spin–active iron(II) compounds

  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

With use of cumulants of two-electron density matrices semiempirical methods are analyzed from a point of view of their suitability to describe qualitative features of electronic correlation important for calculation of electronic structure of the transition metal complexes (TMC). It is shown that traditional semiempirical methods relying upon the Hartree–Fock–Roothaan form of the trial wave function suffer from a structural deficiency not allowing them to distinguish the energies of the atomic multiplets of the TMCs' d-shells. On the other hand, the effective Hamiltonian of the crystal field (EHCF) previously proposed by the authors is shown to be suitable for further parameterization and has been successfully applied for calculations on polyatomic TMCs. Here we describe in details its recent modifications performed in relation to the SINDO/1 parameterization scheme and present the results of the calculations on spin-active Fe(II) complexes with nitrogen-containing polydentate ligands in relation with interpretation of the Mössbauer measurements performed on these complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. König E, Ritter G, Kulshreshtha SK (1985) Chem Rev 85:219

  2. Bersuker IB (1987) Jahn Teller effect and vibronic interactions in modern chemistry [in Russian]. Nauka, Moscow.

  3. Soudackov AV, Tchougréeff AL, Misurkin IA (1992) Theor Chim Acta 83:389

    Google Scholar 

  4. Soudackov AV, Tchougréeff AL, Misurkin IA (1996) Int J Quantum Chem 58:161

    Google Scholar 

  5. Cundari TR, Deng J, Fu W (2000) Int J Quantum Chem 77:421

    Google Scholar 

  6. Adam KR, Atkinson IM, Lindoy LF (1996) J Mol Struct 384:183

    Google Scholar 

  7. Bosque R, Maseras F (2000) J Comp Chem 21:562

    Google Scholar 

  8. Cundari TR, Deng J (1999) J Chem Inf Comp Sci 39:376

    Google Scholar 

  9. McWeeny R (1992) Methods of molecular quantum mechanics 2nd edn. Academic, New York

  10. Mestechkin MM (1977) Density matrix method in theory of molecules [in Russian]. Naukova Dumka, Kiev

  11. Löwdin PO (1959) Adv Chem Phys 2:207

    Google Scholar 

  12. Ziesche P (1994) Physics Lett A 195:213

    Google Scholar 

  13. Clarck T (1987) Jahn Teller effect and vibronic interactions in modern chemistry [in Russian]. Nauka, Moscow

  14. Zülicke L (1973) Quantenchemie. Band 1. Deutscher Verlag der Wissenschaften, Berlin

  15. Cundari TR, Deng J, Fu W (2000) Int J Quantum Chem 77:421

    Google Scholar 

  16. Spartan 5.0, wavefunction inc., irvine, ca

  17. Gomez-Lara J, Basiuk VA, Basiuk EV (2001) J Mol Struct (THEOCHEM) 536:17

    Google Scholar 

  18. Zerner MC (1996) In: Russo N, Salahub D (eds) NATO ASI Workshop. Kluwer, Dordrecht, pp 493–531

  19. Bethe H (1929) Ann Physik 3:133

  20. Jörgensen CK (1962) Absorption spectra and chemical bonding in complexes. Pergamon Press, Oxford

  21. Lever ABP (1984) Inorganic electronic spectroscopy 2nd edn. Elsevier Oxford, Amsterdam New York

  22. Soudackov AV, Tchougréeff AL, Misurkin IA (1996) Int J Quantum Chem 57:663

    Google Scholar 

  23. Soudackov AV, Tchougréeff AL, Misurkin IA (1994) Russ J Phys Chem 68:1256

    Google Scholar 

  24. Soudackov AV, Tchougréeff AL, Misurkin IA (1994) Russ J Phys Chem 68:1264

    Google Scholar 

  25. Tchougréeff AL, Soudackov AV, Misurkin IA, Bolvin H, Kahn O (1995) Chem Phys 193:19

  26. Tokmachev AM, Tchougréeff AL (1999) Khim Fiz 18:80

  27. Tokmachev AM (2003) PhD Thesis, Karpov Institute of Physical Chemistry, Moscow

  28. Jug K, Iffert R, Schulz J (1987) Int J Quantum Chem 32:265

    Google Scholar 

  29. Li J, de Mello PC, Jug K (1992) J Comput Chem 13:85

    Google Scholar 

  30. Li J, Jug K (1992) J Comput Chem 13:93

    Google Scholar 

  31. Soudackov AV, Jug K (1996) Int J Quantum Chem 62:403

    Google Scholar 

  32. Nanda D, Jug K (1980) Theoret Chim Acta 57:95

    Google Scholar 

  33. Sternheimer RM (1963) Phys Rev 130:1423

  34. Trautwein A, Harris FE (1973) Theoret Chim Acta 30:45

    Google Scholar 

  35. Trautwein A, Zimmermann R, Harris FE (1975) Theoret Chim Acta 37:89

    Google Scholar 

  36. Darkhovskii MB, Tchougréeff AL (1999) Chem Phys Reports 18:149

    Google Scholar 

  37. Tchougréeff AL (1997) In: Banci L, Comba P (eds) Molecular modeling and dynamics of bioinorganic systems, Kluwer, Dordrecht, p 217

  38. Darkhovskii MB, Razumov MG, Pletnev IV, Tchougréeff AL (2002) Int J Quant Chem 88:588

    Google Scholar 

  39. Darkhovskii MB, Pletnev IV, Tchougréeff AL (2003) J Comp Chem 24:1703

    Google Scholar 

  40. Darkhovskii MB, Tchougréeff AL (2004) J Phys Chem A 108:6351

    Google Scholar 

  41. Stassen AF, Matthijs de Vos PJvK, Renz F, Ensling J, Kooijman H, Spek AL, Haasnoot JG, Gütlich P, Reedijk J (2000) Eur J Inorg Chem 2000:2231

  42. Bunge CF, Barrientos JA, Bunge AV (1993) Atomic data and nuclear data tables. 53:113

  43. Stassen AF, Roubeau O, Gramage IF, Linarés J, Varret F, Mutikainen I, Turpeinen U, Haasnoot JG, Reedijk J (2001) Polyhedron 20:1699

    Google Scholar 

  44. Roubeau O, Stassen AF, Gramage IF, Codjovi E, Linarés J, Varret F, Haasnoot JG, Reedijk J (2001) Polyhedron 20:1709

    Google Scholar 

  45. Stassen AF, Dova E, Ensling J, Schenk H, Gütlich P, Haasnoot JG, Reedijk J (2002) Inorganica Chimica Acta 335:61

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.L. Tchougréeff.

Additional information

Dedicated to Prof. Dr. Karl Jug on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darkhovskii, M., Soudackov, A. & Tchougréeff, A. Transition metal complexes with open d-shell in semiempirical context. Application to analysis of Mössbauer data on spin–active iron(II) compounds. Theor Chem Acc 114, 97–109 (2005). https://doi.org/10.1007/s00214-005-0649-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-005-0649-9

Keywords

Navigation