Skip to main content
Log in

Analysis of spin states, spin barriers, and trans-effects involved in the coordination and stabilization of dinitrogen by biomimetic iron complexes

  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Coordination of dinitrogen to Sellmann-type iron (II) complexes in a sulfur-dominated coordination sphere, which emulates the environment of iron centers in the FeMo-cofactor of nitrogenase, is analyzed with respect to spin states, spin barriers, and the effect of trans-ligands. Such detailed investigations became only recently feasible when the reliability of density functional methods, which are the only quantum chemical methods capable of describing large transition metal complexes, could significantly be improved for the calculation of energies for states of different spin. It is found that the actual binding energy of dinitrogen is of sufficient magnitude for a reasonably strong fixation of N2 by Sellmann-type coordination compounds. However, potential fixation is determined by additional factors which reduce the binding energy. One factor is the change in spin state of the N2-free metal fragment, which lowers the total energy and quenches the thermodynamic stabilization effect of the binding energy. In addition, the metal fragment rearranges and gains even more stabilization energy for the un-coordinated state. Apart from these thermodynamical effects, the existence of spin barriers, which must be overcome upon binding of dinitrogen, leads to kinetical effects, which cannot be neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leigh GJ (ed) (2002) Nitrogen fixation at the millenium. Elsevier, Amsterdam

  2. Sellmann D, Sutter J (1996) J Biolog Inorg Chem 1:587–593

    Google Scholar 

  3. Sellmann D, Sutter J (1997) Acc Chem Res 30:460–469

    Google Scholar 

  4. Sellmann D, Sutter J (2000) Biological N2 fixation: molecular mechanism of the nitrogenase catalyzed N2 dependent HD-formation, the N2 fixation inhibition and the open-side FeMoco model. In: Trzeciak AM, Sobota D, Ziolkowski J (eds) Perspectives in coordination chemistry, vol. 5. University of Wroclaw, Poland

  5. Sellmann D, Utz J, Blum N, Heinemann FW (1999) Coord Chem Rev 190–192:607–627

  6. Yandulov DV, Schrock RR (2003) Science 301:76–78

    Google Scholar 

  7. Schrock RR (2003) Chem Comm 19:2389–2391

    Google Scholar 

  8. Leigh GJ (2003) Science 301:55–56

    Google Scholar 

  9. Einsle O, Tezcan FA, Andrade SLA, Schmid B, Yoshida M, Howard JB, Rees DC (2002) Science 297:1696–1700

    Google Scholar 

  10. Dance I (2003) Chem Comm 3:324–325

    Google Scholar 

  11. Hinnemann B, Nørskov JK (2003) J Am Chem Soc 125:1466–1467

    Google Scholar 

  12. Schimpl J, Petrilli HM, Blöchl PE (2003) J Am Chem Soc 125:15772–15778

    Google Scholar 

  13. Hinnemann B, Nørskov JK (2004) J Am Chem Soc 126:3920–3927

    Google Scholar 

  14. Reiher M, Hess BA (2004) Adv Inorg Chem 56:55–100

    Google Scholar 

  15. Reiher M, Kirchner B, Hutter J, Sellmann D, Hess BA (2004) Chem Eur J 10:4443–4453

    Google Scholar 

  16. Kirchner B, Reiher M, Hille A, Hutter J, Hess BA (2004) Chem Eur J (in press)

  17. Sellmann D, Hautsch B, Rösler A, Heinemann FW (2001) Angew Chem 113:1553–1558

    Google Scholar 

  18. Sellmann D, Hautsch B, Rösler A, Heinemann FW (2001) Angew Chem Int Ed 40:1505–1507

    Google Scholar 

  19. Sellmann D, Hille A, Heinemann FW, Moll M, Brehm G, Reiher M, Hess BA, Schneider S (2003) Inorg Chim Acta 348:194–198

    Google Scholar 

  20. Sellmann D, Hille A, Rösler A, Heinemann FW, Moll M, Brehm G, Schneider S, Reiher M, Hess BA, Bauer W (2003) Chem Eur J 10:819–830

    Google Scholar 

  21. Reiher M, Hess BA (2002) Chem Eur J 8:5332–5339

    Google Scholar 

  22. Deng L, Margl P, Ziegler T (1999) J Am Chem Soc 121:6479–6487

    Google Scholar 

  23. Ghosh A, Vangberg T, Gonzalez E, Taylor P (2001) J Porph Phthalocyan 5:345–356

    Google Scholar 

  24. Paulsen H, Duelund L, Winkler H, Toftlund H, Trautwein AX (2001) Inorg Chem 40:2201–2203

    Google Scholar 

  25. Reiher M, Salomon O, Hess BA (2001) Theor Chem Acc 107:48–55

    Google Scholar 

  26. Reiher M, Salomon O, Sellmann D, Hess BA (2001) Chem Eur J 7:5195–5202

    Google Scholar 

  27. Becke AD (1993) J Chem Phys 98:5648–5652

    Google Scholar 

  28. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Google Scholar 

  29. Reiher M (2002) Inorg Chem 41:6928–6935

    Google Scholar 

  30. Salomon O, Reiher M, Hess BA (2002) J Chem Phys 117:4729–4737

    Google Scholar 

  31. Franke O, Wiesler BE, Lehnert N, Näther C, Ksenofontov V, Neuhausen J, Tuczek F (2002) Inorg Chem 41:3491–3499

    Google Scholar 

  32. Keogh DW, Poli R (1997) J Am Chem Soc 119:2516–2523

    Google Scholar 

  33. Becke AD (1988) Phys Rev A 38: 3098-3100

    Google Scholar 

  34. Perdew JP (1986) Phys Rev B 33:8822–8824

    Google Scholar 

  35. Koch W, Holthausen MC (2000) A chemist's guide to density functional theory. Wiley-VCH, Weinheim

  36. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162:165–169

    Google Scholar 

  37. Eichkorn K, Treutler O, Öhm H, Häser M, Ahlrichs R (1995) Chem Phys Lett 240:283–290

    Google Scholar 

  38. Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Theor Chem Acc 97:119–124

    Google Scholar 

  39. Schäfer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829

    Google Scholar 

  40. Neugebauer J, Reiher M, Kind C, Hess BA (2002) J Comput Chem 23:895–910

    Google Scholar 

  41. Davidson ER (1967) J Chem Phys 46:3320–3324

    Google Scholar 

  42. Roby KR (1974) Mol Phys 27:81–104

    Google Scholar 

  43. Heinzmann R, Ahlrichs R (1976) Theoret Chim Acta 42:33–45

    Google Scholar 

  44. Schaftenaar G, Noordik JH (2000) J Comput-Aided Mol Design 14:123–134

    Google Scholar 

  45. Kind C (2000) Rotcurve –- A program for the computation of reaction coordinates, University of Erlangen-Nuremberg: (unpublished)

  46. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Google Scholar 

  47. van Duijneveldt FB, van Duijenveldt-van de Rijdt JGCM, van Lenthe JH (1994) Chem Rev 94:1873

  48. Sellmann D, Soglowek W, Knoch F, Moll M (1989) Angew Chem 101:1244–1245

    Google Scholar 

  49. Sellmann D, Soglowek W, Knoch F, Moll M (1989) Angew Chem 28:1271–1272

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Reiher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moritz, G., Reiher, M. & Hess, B. Analysis of spin states, spin barriers, and trans-effects involved in the coordination and stabilization of dinitrogen by biomimetic iron complexes. Theor Chem Acc 114, 76–83 (2005). https://doi.org/10.1007/s00214-005-0646-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-005-0646-z

Keywords

Navigation