Skip to main content

Variation of electrophilicity during molecular vibrations and internal rotations

Abstract

The interrelationships between global reactivity descriptors such as chemical hardness, chemical potential, polarizability and electrophilicity and associated electronic structure principles were investigated in detail by considering distortion along the normal coordinates from the equilibrium structure and internal rotation. The necessary conditions on the extremum of electrophilicity were probed along with other electronic structure principles associated with the global reactivity descriptors. It was observed that an extremum in electrophilicity is obtained where both chemical potential and chemical hardness attain their respective exiremal values in course of the molecular vibrations as well as internal rotations.

This is a preview of subscription content, access via your institution.

References

  1. Parr RG, Szentpaly LV, Liu S (1999) J Am Chem Soc 121:1922

    CAS  Article  Google Scholar 

  2. Pearson RG (1997) Chemical hardness – applications from molecules to solids. VCH-Wiley, Weinheim

  3. (a) Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York; (b) Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793

  4. Parr RG, Chattaraj PK (1991) J Am Chem Soc 113:1854

    CAS  Article  Google Scholar 

  5. (a) Chattaraj PK, Poddar A (1998) J Phys Chem A 102:9944; (b) Chattaraj PK, Poddar A (1999) J Phys Chem A 103:1274

    CAS  Article  Google Scholar 

  6. Chattaraj PK, Poddar A (1999) J Phys Chem A 103:8691

    CAS  Article  Google Scholar 

  7. Fuentealba P, Simon-Manso Y, Chattaraj PK (200) J Phys Chem A 104:3185

  8. Chattaraj PK, Fuentealba P, Gomez B, Contreras R (2000) J Am Chem Soc 122:348

    CAS  Article  Google Scholar 

  9. Chattaraj PK, Sengupta S (1996) J Phys Chem 100:16126

    CAS  Article  Google Scholar 

  10. Chattaraj PK, Maiti B (2003) J Am Chem Soc 125:2705

    CAS  Article  Google Scholar 

  11. Maynard AT, Huang M, Rice WG, Covell DG (1998) Proc Natl Acad Sci USA 95:11578

    CAS  Article  Google Scholar 

  12. Huang M, Maynard A, Turpin JA, Graham L, Janini GM, Covell DG, Rice WG (1998) J Med Chem 41:1371

    CAS  Article  Google Scholar 

  13. (a) Turpin JA, Song Y, Inman JK, Huang M, Wallqvist A, Maynard A, Covell DG, Rice WG, Appella E (1999) J Med Chem 42:67; (b) Maynard AT, Covell D G (2001) J Am Chem Soc 123:1047

  14. (a) Parthasarathi R, Padmanabhan J, Subramanian V, Maiti B, Chattaraj PK (2003) J Phys Chem A 107:10346; (b) Parthasarathi R, Padmanabhan J, Subramanian V, Maiti B, Chattaraj PK (2004) Curr Sci 86:535; (c) Parthasarathi R, Padmanabhan J, Subramanian V, Sarkar U, Maiti B, Chattaraj PK (2003) Internet Electron J Mol Des 2:798; (d) Parthasarathi R, Subramanian V, Chattaraj PK (2003) Chem Phys Lett 382:48; (e) Chattaraj PK, Gutierrez-Oliva S, Jaque P, Toro-Labbe A (2003) Mol Phys 101:2841; (f) Padmanabhan J, Parthasarathi R, Sarkar U, Subramanian V, Chattaraj PK (2004) Chem Phys Letters 383:122; (g) Thanikaivelan P, Subramanian V, Rao JR, Nair BU (2000) Chem Phys Lett 323:59

  15. (a) Cases M, Frenking G, Duran M, Solá M (2002) Organometallics 21:4182; (b) Schindele C, Houk KN, Mayr H (2002) J Am Chem Soc 124:11208; (c) Frantz S, Hartmann H, Doslik N, Wanner M, Kaim W, Kummerer HJ, Denninger G, Barra AL, Duboc-Toia C, Fiedler J, Ciofini I, Urban U, Kaupp M (2002) J Am Chem Soc 124:11208; (d) Frantz S, Hartmann H, Doslik N, Wanner M, Kaim W, Kummerer HJ, Denninger G, Barra AL, Duboc-Toia C, Fiedler J, Ciofini I, Urban U, Kaupp M (2002) J Am Chem Soc 124:10563; (e) Domingo LR, Asensio A, Arroyo P (2002) J Phys Org Chem 15:660; (f) Jaque P, Toro-Labbe A (2002) J Chem Phys 117:3208; (g) Domingo LR, Aurell MJ, Pérez P, Contreras R (2002) J Phys Chem A 106:6871; (h) Pérez P, Toro-Labbé A, Aizman A, Contreras R (2002) J Org Chem 67:4747; (i) Chandrakumar KRS, Pal S (2002) J Phys Chem A 106:5737; (j) Domingo LR, Aurell MJ, Pérez P, Contreras R (2002) Tetrahedron 58:4417; (k) Pérez P, Andrés J, Safont VS, Tapia O, Contreras R (2002) J Phys Chem A 106:5353; (l) Domingo LR (2002) Tetrahedron 58:3765; (m) Pérez P, Aizman A, Contreras R (2002) J Phys Chem A 106:3964; (n) Domingo LR, Arno M, Contreras R, Pérez P (2002) J Phys Chem A 106:952; (o) Capriati V, Florio S, Luisi R, Rocchetti MT (2002) J Org Chem 67:759

    Article  Google Scholar 

  16. (a) Chattaraj PK, Pérez P, Zevallos J, Toro-Labbé A (2002) J Mol Struct (THEOCHEM) 580:171; (b) Domingo LR, Aurell MJ (2002) J Org Chem 67:959; (c) Griveau S, Bedioui F, Adamo C (2001) J Phys Chem A 105:11304; (d) Lu HF, Sun YC, (2001) Surf Sci 494:787; (e) von Szentpaly L, Gardner D (2001) J Phys Chem A 105:9467; (f) Mayr H, Bug T, Gotta MF, Hering N, Irrgang B, Janker B, Kempf B, Loos R, Ofial AR, Remennikov G, Schimmel H (2001) J Am Chem Soc 123:9500; (g) Chattaraj PK, Maiti B (2001) J Chem Educ 78:811; (h) Gutierrez-Oliva S, Jaque P, Toro-Labbe A (2000) J Phys Chem A 104:8955; (i) Gardner D, von Szentpaly L (1999) J Phys Chem A103:9313

  17. Chamorro E, Chattaraj PK, Fuentealba P (2003) J Phys Chem A 107:7068

    CAS  Article  Google Scholar 

  18. Pearson RG, Palke WE (1992) J Phys Chem 96:3283

    CAS  Article  Google Scholar 

  19. (a) Torrent-Sucarrat M, Luis JM, Duran M, Sola M (2002) J Chem Phys 117:10561; (b) Torrent-Sucarrat M, Luis JM, Duran M, Sola M (2001) J Am Chem Soc 123:7951

    CAS  Article  Google Scholar 

  20. Blancafort L, Torrent-Sucarrat M, Luis JM, Duran M, Sola M (2003) J Phys Chem A 107:7337

    CAS  Article  Google Scholar 

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA,Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, Revision A.7; Gaussian Pittsburgh

  22. DeProft F, Geerlings P (1997) J Chem Phys 106:3270

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Subramanian or P. K. Chattaraj.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Parthasarathi, R., Elango, M., Subramanian, V. et al. Variation of electrophilicity during molecular vibrations and internal rotations. Theor Chem Acc 113, 257–266 (2005). https://doi.org/10.1007/s00214-005-0634-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-005-0634-3

Keywords

  • Electrophilicity
  • DFT
  • Reactivity descriptor
  • Vibration
  • Internal rotation