Theoretical Chemistry Accounts

, Volume 115, Issue 2–3, pp 177–189 | Cite as

A Theoretical Study of the Hydration of Li+ by Monte Carlo Simulations with Refined Ab Initio Based Model Potentials

  • María Luisa San-Román
  • Mauricio Carrillo-Tripp
  • Humberto Saint-Martin
  • Jorge Hernández-Cobos
  • Iván Ortega-Blake
Regular Article


Four water models that have the same analytical potential but different degrees of freedom were used to examine the hydration of Li+: (a) a polarizable and flexible molecule with constraints that account for the quantal nature of the vibration, (b) a polarizable and classically flexible molecule, (c) a polarizable and rigid molecule, and finally (d) a nonpolarizable and rigid molecule. The goal was to determine how individual molecular properties affect the correct description of the hydration of ions by comparing the structural and thermodynamic predictions for the aqueous solution as made by the different models, which ranged from a very refined one to a simple effective potential. The length of the Monte Carlo runs was large enough to ensure convergence and provide statistically meaningful results; the four models attained good agreement with the experimental data available for the hydration of Li+, as well as with the results of the most refined simulations. A well-defined first hydration shell was found. It had four water molecules whose dipoles were not aligned to the electric field of the ion because of their hydrogen-bonding with water molecules in outer shells. In the case of the most refined water model, the results showed this pattern clearly. On the other hand, the rigid nonpolarizable version produced a slightly higher hydration number and an almost complete alignment of the dipoles to the ion’s electric field. Moreover, a detailed analysis of a microscopic molecular model of hydration showed that the average intramolecular geometry of the water molecules in the first hydration shell was the same as the one for those in the bulk, whereas the electric field of the ion induced a dipole 0.2 D higher in the water molecules of the first hydration shell. The value of the bulk was recovered at the second shell, which explains the good performance of the simplest model. Thus, despite the differences found in the description of the first hydration shell between the polarizable and the nonpolarizable models, the major effect on the polarization of the water molecules resulted from the water-water interaction.


Lithium ion hydration Polarizable force fields Monte Carlo simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ayala R, Martínez JM, Pappalardo RR, Saint-Martin H, Ortega-Blake I, Sánchez-Marcos E (2002) Development of first-principles interaction model potentials. an application to the study of the bromide hydration. J Chem Phys 117 (23):10512–10524CrossRefGoogle Scholar
  2. 2.
    Ayala R, Martínez JM, Pappalardo RR, Sánchez-Marcos E (2003) On the halide hydration study: development of first-principles halide ion–water interaction potentials based on a polarizable model. J Chem Phys 119(18):9538–9548CrossRefGoogle Scholar
  3. 3.
    Bader RFW (1995) Atoms in molecules. Oxford University Press, New YorkGoogle Scholar
  4. 4.
    Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91:6269–6271CrossRefGoogle Scholar
  5. 5.
    Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B (eds). Intermolecular forces. D. Reidel Publishing Company, Dordrecht, pp 331–342Google Scholar
  6. 6.
    Bernal-Uruchurtu MI, Ortega-Blake I (1995) Refined monte carlo study of Mg2+ and Ca2+ hydration. J Chem Phys 103:1588CrossRefGoogle Scholar
  7. 7.
    Birch NJ (1999) Inorganic pharmacology of lithium. Chem Rev 99(9):2659–2682CrossRefPubMedGoogle Scholar
  8. 8.
    Boys SF, Bernardi F (1970) The calculations of small molecular interactions by the differences of separate total energies. some procedures with reduced errors. Mol Phys 19(4):553–566CrossRefGoogle Scholar
  9. 9.
    Carrillo-Tripp M, Saint-Martin H, Ortega-Blake I (2003) A comparative study of the hydration of Na+ and K+ with refined polarizable model potentials. J Chem Phys 118(15):7062–7073CrossRefGoogle Scholar
  10. 10.
    Carrillo-Tripp M, Saint-Martin H, Ortega-Blake I (2004) Minimalist molecular model for nanopore selectivity. Phys Rev Lett 93(16):168104CrossRefPubMedGoogle Scholar
  11. 11.
    Cartailler T, Kunz W, Turq P, Bellissent-Funel MC (1991) Lithium bromide in acetonitrile and water – a neutron-scattering study. J Phys Condens Matter 3(47):9511–9520CrossRefGoogle Scholar
  12. 12.
    Chen B, Potoff JJ, Siepmann J.I (2000) Adiabatic nuclear and electronic sampling monte carlo simulations in the gibbs ensemble: application to polarizable force fields for water. J Phys Chem B 104:2378–2390CrossRefGoogle Scholar
  13. 13.
    Coe JV (1994) Connecting cluster ions and bulk aqueous solvation, a new determination of bulk single ion solvation enthalpies. Chem Phys Lett 229:161–168CrossRefGoogle Scholar
  14. 14.
    Curtiss LA, Woods-Halley J, Hautman J, Rahman A (1987) Nonadditivity of ab initio pair potentials for molecular dynamics of multivalent transition metal ions in water. J Chem Phys 86(4):2319–2327CrossRefGoogle Scholar
  15. 15.
    Dang LX (1992) Development of nonadditive intermolecular potentials using molecular dynamics: solvation of Li+ and F ions in polarizable water. J Chem Phys 96(9):6970–6977CrossRefGoogle Scholar
  16. 16.
    Degrève L, de Pauli VM, Duarte MA (1997) Simulation study of the role and structure of monatomic ions multiple hydration shells. J Chem Phys 106(2):655–665CrossRefGoogle Scholar
  17. 17.
    Duan Z, Zhang Z (2003) Solvation properties of Li+ and Cl in water: molecular dynamics simulation with a non-rigid model. Mol Phys 101(10):1501–1510CrossRefGoogle Scholar
  18. 18.
    Džidić I, Kebarle P (1970) Hydration of the alkali ions in the gas phase, enthalpies and entropies of reactions M+(H2O)n-1 + HsO → M+(H2O)n. J Phys Chem 74(7):1466–1474CrossRefGoogle Scholar
  19. 19.
    Evans R (1998). Mol Sim 4:409CrossRefGoogle Scholar
  20. 20.
    Ewald PP (1921) Die berechnung optischer und elektrostatischer Gitterpotentiale. Ann Phys 64:253–287CrossRefGoogle Scholar
  21. 21.
    Feller D, Glendening ED, Kendall RA, Peterson KA (1994) An extended basis set ab initio study of Li+(H2O)n, n=1 − 6. J Chem Phys 100(7):4981–4997CrossRefGoogle Scholar
  22. 22.
    Feller D, Glendening ED, Woon DE, Feyereisen MW (1995) An extended basis set ab initio study of alkali metal cation-water clusters. J Chem Phys 103(9):3526–3642CrossRefGoogle Scholar
  23. 23.
    Flyvbjerg H, Petersen HG (1989) Error-estimates on averages of correlated data. J Chem Phys 91(1):461–466CrossRefGoogle Scholar
  24. 24.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, J. A. Montgomery J, Stratmann R.E, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski, J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, Revision A.7. Gaussian, Inc, Pittsburgh PAGoogle Scholar
  25. 25.
    Glendening ED, Feller D (1995) Cation-water interactions: The M+(H2O)n clusters for alkali metals, M = Li, Na, K, Rb and Cs. J Phys Chem 99:3060–3067CrossRefGoogle Scholar
  26. 26.
    Grossfield A (2005) Dependence of ion hydration on the sign of the ion’s charge. J Chem Phys 122:024 506CrossRefGoogle Scholar
  27. 27.
    Hannongbua S (1997) The role of nonadditive effects in the first solvation shell of Na+ and Mg2+ in liquid ammonia: Monte carlo studies including three-body corrections. J Chem Phys 106(14):6076–6081CrossRefGoogle Scholar
  28. 28.
    Hannongbua S (1998) On the solvation of lithium ions in liquid ammonia: Monte carlo simulations with a three-body potential. Chem Phys Lett 288(5–6):663–668CrossRefGoogle Scholar
  29. 29.
    Hastings WK (1970) Monte carlo sampling methods using markov chains and their applications. Biometrika 57:92–109CrossRefGoogle Scholar
  30. 30.
    Helm L, Merbach AE (1999) Water exchange on metal ions: experiments and simulations. Coord Chem Rev 187:151–181CrossRefGoogle Scholar
  31. 31.
    Hernández-Cobos J, Ortega-Blake I (1995) Hydrophobic hydration in methanol aqueous-solutions. J Chem Phys 103(21):9261–9273CrossRefGoogle Scholar
  32. 32.
    Hernández-Cobos J, Ortega-Blake I, Bonilla-Marín M, Moren o-Bello M (1993) A refined monte-carlo study of aqueous urea solutions. J Chem Phys 99(11):9122–9134CrossRefGoogle Scholar
  33. 33.
    Hernández-Cobos J, Saint-Martin H, Mackie AD, Vega LF, Ortega-Blake I (2005) Water-liquid vapor equilibria predicted by refined ab initio derived potentials. J Chem Phys 123(4):044 506CrossRefGoogle Scholar
  34. 34.
    Hess B, Saint-Martin H, Berendsen HJC (2002) Flexible constraints: an adiabatic treatment of quantum degrees of freedom, with application to the flexible and polarizable mobile charge densities in harmonic oscillators model for water. J Chem Phys 116(22):9602–9610CrossRefGoogle Scholar
  35. 35.
    Howell I, Nielson GW (1996) Li+ hydration in concentrated aqueous solution. J Phys Condens Matter 8:4455–4463CrossRefGoogle Scholar
  36. 36.
    Imberti S, Botti A, Bruni F, Cappa G, Ricci MA, Soper AK (2005) Ions in water: the microscopic structure of concentrated hydroxide solutions. J Chem Phys 122:194 509CrossRefGoogle Scholar
  37. 37.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRefGoogle Scholar
  38. 38.
    Kameda Y, Usuki T, Uemura O (1999) The structure analysis of highly concentrated Li-salt solutions. High Temperature Materials and Processes 18(1–2):27–40Google Scholar
  39. 39.
    Karpov GV (2005) On the structure of hydration shells of alkali metal ions in aqueous solution. Chem Phys Lett 402(4–6):300–305CrossRefGoogle Scholar
  40. 40.
    Klots CE (1981) Solubility of protons in water. J Chem Phys 85:3585–3588CrossRefGoogle Scholar
  41. 41.
    Kochanski E (1987) Nonadditivity of SCF interaction energies in H3O+(H2O)2. Chem Phys Lett 133(2):143–149CrossRefGoogle Scholar
  42. 42.
    Kowall T, Foglia F, Helm L, Merbach AE (1995) Molecular-dynamics simulation study of lanthanide ions Ln3+ in aqueous–solution including water polarization – change in coordination-number from 9 to 8 along the series. J Am Chem Soc 117(13): 3790–3799CrossRefGoogle Scholar
  43. 43.
    Lee SH (2003) Molecular dynamics simulation of limiting conductance for Li+ ion in supercritical water using polarizable models. Mol Sim 29(3):211 –221CrossRefGoogle Scholar
  44. 44.
    Lee SH, Rasaiah JC (1996) Molecular dynamics simulation of ion mobility. 2. Alkali metal and halide ions using the SPC/E model for water at 25° C. J Phys Chem 100:1420–1425CrossRefGoogle Scholar
  45. 45.
    Loeffler HH, Rode BM (2002) The hydration structure of the lithium ion. J Chem Phys 117(1):110–117CrossRefGoogle Scholar
  46. 46.
    Lotrich VF, Salewicz K (1997) Symmetry-adapted perturbation theory of three-body nonadditivity of intermolecular interaction energy. J Chem Phys 106(23):9668–9687CrossRefGoogle Scholar
  47. 47.
    Lyubartsev AP, Laaksonen A (2000) Determination of effective pair potentials from ab initio simulations: application to liquid water. Chem Phys Lett 325(1–3):15–21CrossRefGoogle Scholar
  48. 48.
    Lyubartsev AP, Laasonen K, Laaksonen A (2001) Hydration of Li+ ion, an ab initio molecular dynamics simulation. J Chem Phys 114(7):3120–3126CrossRefGoogle Scholar
  49. 49.
    van-der Maarel JRC, Powell DH, Jawahier AK, Leyte-Zuiderweg LH, Nielson GW, Bellissent-Funel MC (1989) On the structure and dynamics of lithium counterions in poly-electrolyte solutions – a nuclear magnetic-resonance and neutron-scattering study. J Chem Phys 90(11):6709–6715CrossRefGoogle Scholar
  50. 50.
    Marcus Y (1994) A simple empirical model describing the thermodynamics of hydration of ions of widely varying charges, sizes and shapes. Biophys Chem 51:111–127CrossRefGoogle Scholar
  51. 51.
    Marcus Y (1997) Ion properties. Marcel Dekker Inc, New YorkGoogle Scholar
  52. 52.
    Martin MG, Chen B, Siepmann JI (1998) A novel Monte Carlo algorithm for polarizable force fields: application to a fluctuating charge model for water. J Chem Phys 108(9):3383–3385CrossRefGoogle Scholar
  53. 53.
    Martínez JM, Hernández-Cobos J, Saint-Martin H, Pappalardo RR, Ortega-Blake I, Sánchez-Marcos E (2000) Coupling a polarizable model to the hydrated ion – water interaction potential: a test on the Cr3+ hydration. J Chem Phys 112(5):2339–2347CrossRefGoogle Scholar
  54. 54.
    Martínez JM, Pappalardo RR, Sánchez-Marcos E (1998) A molecular dynamics study of the Cr3+ hydration based on a fully flexible hydrated ion model. J Chem Phys 109(4):1445–1455CrossRefGoogle Scholar
  55. 55.
    Martínez JM, Pappalardo RR, Sánchez-Marcos E (1999) Shape and size of simple cations in aqueous solutions: a theoretical reexamination of the hydrated ion via computer simulations. J Am Chem Soc 121(3):1669–1676CrossRefGoogle Scholar
  56. 56.
    Masia M, Rey R (2003) Reaction rate theory approach to thermodynamic state dependence of hydration shell exchange for Li+(aq). J Phys Chem B 107:2651–2659CrossRefGoogle Scholar
  57. 57.
    Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equations of state calculations by fast computing machines. J Chem Phys 21:1087–1089CrossRefGoogle Scholar
  58. 58.
    Michaellian KH, Moskovits M (1978) Tetrahedral hydration of ions in solution. Nature 273:135–136CrossRefGoogle Scholar
  59. 59.
    Narten AH, Vaslow F, Levy HA (1973) Diffraction pattern and structure of aqueous lithium-chloride solutions. J Chem Phys 58(11):5017–5023CrossRefGoogle Scholar
  60. 60.
    Natália M, Cordeiro DS, Ignaczak A, Gomes JANF (1993) Simulation of water solutions of Ni2+ at infinite dilution. Chem Phys 176(1):97–108CrossRefGoogle Scholar
  61. 61.
    Newsome JR, Nielson GW, Enderby JE (1980) Lithium ions in aqueous solution. J Phys C: Solid St Phys 13:L923–L926CrossRefGoogle Scholar
  62. 62.
    Noworyta JP, Koneshan S, Rasaiah JC (2000) Dynamics of aqueous solutions of ions and neutral solutes at infinite dilution at a supercritical temperature of 683 K. J Am Chem Soc 122:11194–11 202CrossRefGoogle Scholar
  63. 63.
    Öhrn A, Karlström G (2004) A combined quantum chemical statistical mechanical simulation of the hydration of Li+, Na+, F and Cl. J Phys Chem B 108:8452–8459CrossRefGoogle Scholar
  64. 64.
    Ohtaki H, Radnai T (1993) Structure and dynamics of hydrated ions. Chem Rev 93(3):1157–1204CrossRefGoogle Scholar
  65. 65.
    Ortega-Blake I, Hernández-Cobos J, Novaro O (1984) The role of nonadditive effects in the second hydration shell of Mg2+ and Ca2+ – a molecular-orbital study of the three-body potential-energy surface. J Chem Phys 81(4):1894–1900CrossRefGoogle Scholar
  66. 66.
    Ortega-Blake I, Novaro O, Leś A, Rybak S (1982) A molecular-orbital study of the hydration of ions – the role of non-additive effects in the hydration shells around Mg2+ and Ca2+. J Chem Phys 76(11):5405–5413CrossRefGoogle Scholar
  67. 67.
    Pappalardo RR, Martínez JM, Sánchez-Marcos E (1996) Application of the hydrated ion concept for modeling aqueous solutions containing highly charged ions: a Monte Carlo simulation of Cr3+ in water using an ab initio intermolecular potential. J Phys Chem 100(28):11748–11 754CrossRefGoogle Scholar
  68. 68.
    Pastor N, Ortega-Blake I (1993) On the existence of very large nonadditivities for clusters of distorted water molecules. J Chem Phys 99(10):7899–7906CrossRefGoogle Scholar
  69. 69.
    Pettitt BM, Rossky PJ (1986) Alkali-halides in water – ion solvent correlations and ion-ion potentials of mean force at infinite dilution. J Chem Phys 84(10):5836–5844CrossRefGoogle Scholar
  70. 70.
    Reimers JR, Watts RO, Klein ML (1982) Intermolecular potential functions and the properties of water. Chem Phys 64(1):95–114CrossRefGoogle Scholar
  71. 71.
    Rempe SB, Pratt LR, Hummer G, Kress JD, Martin RL, Redondo A (2000) The hydration number of Li+ in liquid water. J Am Chem Soc 122:966–967CrossRefGoogle Scholar
  72. 72.
    Rodgers MT, Armentrout PB (1997) Collision-induced dissociation measurements on Li+(H2O)n, n = 1–6: the first direct measurement of the Li+–OH2 bond energy. J Phys Chem A 101:1238–1249CrossRefGoogle Scholar
  73. 73.
    Rudolph W, Brooker MH, Pye CC (1995) Hydration of lithium ion in aqueous-solution. J Phys Chem 99(11):3793–3797CrossRefGoogle Scholar
  74. 74.
    Saint-Martin H, Hernández-Cobos J, Bernal-Uruchurtu MI, Ortega-Blake I, Berendsen HJC (2000) A mobile charge densities in harmonic oscillators (MCDHO) molecular model for numerical simulations: the water-water interaction. J Chem Phys 113(24):10899–10912CrossRefGoogle Scholar
  75. 75.
    Saint-Martin H, Hernández-Cobos J, Ortega-Blake I (2005) Water potentials based on a single potential energy surface and different molecular degrees of freedom. J Chem Phys 122(22):224– 509CrossRefGoogle Scholar
  76. 76.
    Saint-Martin H, Hess B, Berendsen HJC (2004) An application of flexible constraints in monte carlo simulations of the isobaric-isothermal ensemble of liquid water and ice Ih with the polarizable and flexible MCDHO model. J Chem Phys 120(23):11133–11143CrossRefPubMedGoogle Scholar
  77. 77.
    SanRomán-Zimbrón ML, Ortega-Blake I (1997) On the molecular basis of hydrophobicity: A Monte Carlo study of propionic acid hydration. J Chem Phys 107(8):3253–3261CrossRefGoogle Scholar
  78. 78.
    Schmid R, Miah AM, Sapunov VN (2000) A new table of the thermodynamic quantities of ionic hydration: values and some applications (enthalpy–entropy compensation and born radii). Phys Chem Chem Phys 2:97–102CrossRefGoogle Scholar
  79. 79.
    Soper AK (1996) Empirical potential monte carlo simulation of fluid structure. Chem Phys 202:295–306CrossRefGoogle Scholar
  80. 80.
    Soper AK (2001) Tests of the empirical potential structure refinement method and a new method of application to neutron diffraction data on water. Mol Phys 99(17):1503–1516CrossRefGoogle Scholar
  81. 81.
    Spångberg D, Hermansson K (2003) Effective three-body potentials for Li+(aq) and Mg2+(aq). J Chem Phys 119(14):7263–7281CrossRefGoogle Scholar
  82. 82.
    Spångberg D, Hermansson K (2004) Many-body potentials for aqueous Li+, Na+, Mg2+, and Al3+: comparison of effective three-body potentials and polarizable models. J Chem Phys 120(10):4829–4843CrossRefPubMedGoogle Scholar
  83. 83.
    Tissandier MD, Cowen KA, Feng WY, Gundlach E, Cohen MH, Earhart AD, Coe JV, Jr TRT (1998) The proton’s absolute aqueous enthalpy and gibbs free energy of solvation from cluster-ion solvation data. J Phys Chem A 102:7787–7794CrossRefGoogle Scholar
  84. 84.
    Tóth G (1996) Ab initio pair potential parameter set for the interaction of a rigid and a flexible water model and the complete series of the halides and alkali cations. J Chem Phys 105(13):5518–5524CrossRefGoogle Scholar
  85. 85.
    Yamagami M, Yamaguchi T, Wakita H, Misawa M (1994) Pulsed-neutron diffraction study on lithium-(i) hydration in supercooled aqueous chloride solutions. J Chem Phys 100(4):3122–3126CrossRefGoogle Scholar
  86. 86.
    Zhou J, Lu X, Wang Y, Shi J (2002) Molecular dynamics study on ionic hydration. Fluid Phase Equil 194–197:257–270CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • María Luisa San-Román
    • 1
  • Mauricio Carrillo-Tripp
    • 2
  • Humberto Saint-Martin
    • 3
  • Jorge Hernández-Cobos
    • 3
  • Iván Ortega-Blake
    • 3
    • 4
  1. 1.Centro de Investigaciones QuímicasUniversidad Autónoma del Estado de MorelosCuernavacaMéxico
  2. 2.Chemistry DepartmentWabash CollegeCrawfordsvilleUSA
  3. 3.Centro de Ciencias FísicasUniversidad Nacional Autónoma de MéxicoCuernavacaMéxico
  4. 4.Departamento de Física Aplicada,Centro de Investigación y Estudios AvanzadosUnidad MéridaCordemex, MéridaMéxico

Personalised recommendations