Skip to main content
Log in

A first principles approach to optimal control

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

This article shows that by using ab initio or first principle calculations it is possible to obtain reliable ingredients needed to simulate pump-probe and optimal control experiments. Our experimental challenge is to elucidate the reaction mechanism behind an optimal pulse tailored to maximize ionization in the system CpMn(CO)3, while avoiding CO dissociation. Starting from MRCI/CASSCF potential energy curves calculated along the relevant CO fragmentation channel, we use the resulting MRCI wave function to estimate non-adiabatic couplings, as well as neutral-to-neutral and neutral-to-ionic dipole couplings. The state-of-the-art potentials and couplings serve to perform wave packet propagations which simulate the femtosecond pump-probe spectra that explain the features shown in the experimental optimal pulse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zewail AH (2000). (Nobel lecture) Angew Chem Int Ed 39:2586

    Article  CAS  Google Scholar 

  2. Crim F (1990). Science 249:1387

    CAS  Google Scholar 

  3. Shapiro M, Brumer P (1986). Chem Phys Lett 126:541

    Article  Google Scholar 

  4. Tannor DJ, Rice SA (1985). J Chem Phys 83:5013

    Article  CAS  Google Scholar 

  5. Tannor DJ, Kosloff R, Rice SA (1986). J Chem Phys 85:5805

    Article  CAS  Google Scholar 

  6. Bergmann K, Theuer H, Shore BW (1998). Rev Mod Phys 70:1003

    Article  CAS  Google Scholar 

  7. Rabitz H, de Vivie-Riedle R, Motzkus M, Kompa K (2000). Science 288:824

    Article  PubMed  CAS  Google Scholar 

  8. Baumert T, Thalweiser R, Weiss V, Gerber G (1995). Femtosecond chemistry. VCH, Weinheim

    Google Scholar 

  9. Zhu L, Suto K, Fiss J, Wada R, Seidan T, Gordon RJ (1997). Phys Rev Lett s78:4108

    Article  Google Scholar 

  10. Thompson DL (1998). Modern methods for multidimensional dynamics computations in chemistry. World Scientific, Singapore

    Google Scholar 

  11. Kühn O, Manz J, Miller WH (eds). (2004). Multidimensional quantum reaction dynamics, vol 304 (1–2), Chem Phys (special issue).

  12. Judson RS, Rabitz H (1992). Phys Rev Lett 68:1500

    Article  PubMed  CAS  Google Scholar 

  13. Brixner T, Gerber G (2003). Chem Phys Chem 4:418

    PubMed  CAS  Google Scholar 

  14. Bardeen CJ, Yakovlev V, Wilson K, Carpenter S, Weber PM, Warren W (1997). Chem Phys Lett 280:151

    Article  CAS  Google Scholar 

  15. Assion A, Baumert T, Bergt M, Brixner T, Kiefer B, Seyfried V, Strehle M, Gerber G (1998). Science 282:919

    Article  PubMed  CAS  Google Scholar 

  16. Brixner T, Damrauer NH, Gerber G, Niklaus P (2001). Nature 414:57

    Article  PubMed  CAS  Google Scholar 

  17. Glaß A, Rozgonyi T, Feurer T, Szabó G, Sauerbrey R (2000). Appl Phys B71:267

    Google Scholar 

  18. Levis RJ, Menkir GM, Rabitz H (2001). Science 292:709

    Article  PubMed  CAS  Google Scholar 

  19. Vajda Š et al (2002). Ultrafast dynamics in molecular science. World Scientific, Singapore

    Google Scholar 

  20. Herek JL, Wohlleben W, Cogdell RJ, Zeidler D, Motzkus M (2002). Nature 417:533

    Article  PubMed  CAS  Google Scholar 

  21. Geremia JM, Zhu WS, Rabitz H (2000). J Chem Phys 113:10841

    Article  CAS  Google Scholar 

  22. Hornung T, Motzkus M, de Vivie-Riedle R (2001). J Chem Phys 115:3105–3110

    Article  CAS  Google Scholar 

  23. Hornung T, Motzkus M, de Vivie-Riedle R (2002). Phys Rev A 65:021403

    Article  CAS  Google Scholar 

  24. Kurtz L, Rabitz H, de Vivie-Riedle R (2002). Phys Rev A 65:032514

    Article  CAS  Google Scholar 

  25. Zhu W, Rabitz H (1999). J Chem Phys 111:472

    Article  CAS  Google Scholar 

  26. Mitra A, Rabitz H (2003). Phys Rev A 67:033407

    Article  CAS  Google Scholar 

  27. White JL, Pearson BJ, Bucksbaum PH (2004). quant-ph/0401018

  28. Mancal T, May V (2002). Chem Phys Lett 362:407

    Article  CAS  Google Scholar 

  29. Daniel C, Full J, González L, Lupulescu C, Manz J, Merli A, Vajda S, Wöste L (2003). Science 299:536

    Article  PubMed  CAS  Google Scholar 

  30. Manz J, Wöste L (eds). (1995). Femtosecond chemistry. VCH, Weinheim

    Google Scholar 

  31. Eickeyer F, Kaindl RA, Woerner M, Elsaesser T, Weiner AM (2000). Opt Lett 25:1472

    Google Scholar 

  32. Witte T, Hornung T, Windhourn L, Proch D, de~Vivie-Riedle R, Motzkus M, Kompa KL (2003). J Chem Phys 118:2021

    Article  CAS  Google Scholar 

  33. Olivucci M (eds). (2005). Computational photochemistry. Elsevier, Amsterdam

    Google Scholar 

  34. Banares L, Baumert T, Bergt M, Kiefer B, Gerber G (1997). Chem Phys Lett 267:141

    Article  CAS  Google Scholar 

  35. Trushin SA, Fuss W, Schmid WE, Kompa L (1998). J Phys Chem 102:4129

    CAS  Google Scholar 

  36. Trushin SA, Fuss W, Kompa L, Schmid W (2000). Chem Phys 259:313

    Article  CAS  Google Scholar 

  37. Matsubara T, Daniel C, Veillard A (1994). Organometallics 13:4905

    Article  CAS  Google Scholar 

  38. Daniel C, Kolba E, Lehr L, Manz J, Schröder T (1994). J Phys Chem 98:9823

    Article  CAS  Google Scholar 

  39. Finger K, Daniel C, Saalfrank P, Schmidt B (1996). J Phys Chem 100:3368

    Article  CAS  Google Scholar 

  40. Erdman M, Rubner O, Shen Z, Engel V (2001). Chem Phys Lett 341:338

    Article  Google Scholar 

  41. Rubner O, Engel V (2001). J Chem Phys 115:2936

    Article  CAS  Google Scholar 

  42. Paterson MJ, Hunt PA, Robb MA, Takahashi O (2002). J Phys Chem 106:10494

    CAS  Google Scholar 

  43. Trushin SA, Fuss W, Schmid W (2004). J Chem B 37:3987

    CAS  Google Scholar 

  44. Full J, Daniel C, González L (2001). J Phys Chem A 105:184

    Article  CAS  Google Scholar 

  45. Full J, Daniel C, González L (2003). Phys Chem Chem Phys 5:87

    Article  CAS  Google Scholar 

  46. Daniel C, Full J, González L, Kaposta C, Krenz M, Lupulescu C, Manz J, Minoto S, Oppel M, Rosendo-Francisco P, Vajda Š, Wöste L (2001). Chem Phys 267:247

    Article  CAS  Google Scholar 

  47. Hirsch G, Bruna PJ, Buenker RJ, Peyerimhoff SD (1980). Chem Phys 45:335

    Article  CAS  Google Scholar 

  48. Baer M (1975). Chem Phys Lett 35:112

    Article  CAS  Google Scholar 

  49. Full J, González L, Manz J (2005). Chem Phys 314:143

    Article  CAS  Google Scholar 

  50. Schön J, Köppel H (1999). J Phys Chem 103:8579

    Google Scholar 

  51. Rabitz H (2003). Science 299:525

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leticia González.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, L., Full, J. A first principles approach to optimal control. Theor Chem Acc 116, 148–159 (2006). https://doi.org/10.1007/s00214-005-0035-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-005-0035-7

Keywords

Navigation