Skip to main content
Log in

Computational Organic Photochemistry: Strategy, Achievements and Perspectives

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In recent years, computational photochemistry has achieved increasing consideration as a valid tool for the investigation of photochemical reaction mechanisms in organic chromophores. A theoretical chemist can now adapt his/her “instruments” to the subject under investigation, as every other scientist does when there is a problem to study and a methodology to be chosen. Thus, different computational strategies and tools can now be operated like a virtual spectrometer to characterize the photoinduced molecular deformation and reactivity of a given chromophore, so that a full description of the reactive process (i.e. its reaction coordinate) from energy absorption to photoproducts formation can be achieved. Here we will review the basic concepts, the computational strategy and the theoretical tools, which permit this thorough description to be realized. Applications to the biologically and technologically relevant problem of photoinduced isomerizations in non-polar and highly polar conjugated polyenes will be shown, including also environment effects. Recent advances in this area (namely external charge effects) will be presented, together with new computational approaches, which allow molecular systems of biological size (e.g. the rhodopsin photoreceptors) to be investigated at an unprecedented level of accuracy. This should open the way to the accurate investigation of sizable systems in realistic conditions, providing chemists with information that might be used in molecular technology as a guideline for the design of artificial photoswitchable devices and the control of their photoinduced processes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Drexler KE (1986). Engines of creation: the coming era of nanotechnology. Anchor, New York, USA

    Google Scholar 

  2. Dugave C, Demange L (2003). Chem Rev 103:2475

    Article  PubMed  CAS  Google Scholar 

  3. Tamai N, Miyasaka H (2000). Chem Rev 100:1875–1890

    Article  PubMed  CAS  Google Scholar 

  4. Yokoyama Y (2000). Chem Rev 1000:1717–1739

    Article  CAS  Google Scholar 

  5. Irie M (2000). Chem Rev 100:1685–1716

    Article  PubMed  CAS  Google Scholar 

  6. Truhlar DG, Gordon MS (1990). Science 249:491

    CAS  Google Scholar 

  7. Fuss W, Lochbrunner S, Muller AM, Schikarski T, Schmid WE, Trushin SA (1998). Chem Phys 232:161–174

    Article  CAS  Google Scholar 

  8. Robb MA, Garavelli M, Olivucci M, Bernardi F (2000). Rev Comput Chem 15:87–146

    CAS  Google Scholar 

  9. Punwong C, Owens J, Martinez TJ (2005). Biophys J 88:530A-A

  10. Balzer B, Stock G (2005). Chem Phys 310:33–41

    Article  CAS  Google Scholar 

  11. Jasper AW, Truhlar DG (2005). J Chem Phys 122:044101

    Article  CAS  Google Scholar 

  12. Roman E, Martens CC (2004). J Chem Phys 121:11572–11580

    Article  PubMed  CAS  Google Scholar 

  13. Toniolo A, Thompson AL, Martinez TJ (2004). Chem Phys 304:133–145

    Article  CAS  Google Scholar 

  14. Jasper AW, Zhu CY, Nangia S, Truhlar DG (2004). Faraday Discuss 127:1–22

    Article  PubMed  CAS  Google Scholar 

  15. Toniolo A, Olsen S, Manohar L, Martinez TJ (2004). Faraday Discuss 127:149–163

    Article  PubMed  CAS  Google Scholar 

  16. Worth GA, Robb MA, Burghardt I (2004). Faraday Discuss 127:307–323

    Article  PubMed  CAS  Google Scholar 

  17. Worth GA, Cederbaum LS (2004). Ann Rev Phys Chem 55:127–158

    Article  CAS  Google Scholar 

  18. Ko C, Levine B, Toniolo A, Manohar L, Olsen S, et al (2003). J Am Chem Soc 125:12710–12711

    Article  PubMed  CAS  Google Scholar 

  19. Balzer B, Hahn S, Stock G (2003). Chem Phys Lett 379:351–358

    Article  CAS  Google Scholar 

  20. Balzer B, Dilthey S, Hahn S, Thoss M, Stock G (2003). J Chem Phys 119:4204–4215

    Article  CAS  Google Scholar 

  21. Schultz T, Quenneville J, Levine B, Toniolo A, Martinez TJ, et al (2003). J Am Chem Soc 125:8098–8099

    Article  PubMed  CAS  Google Scholar 

  22. Baeck KK, Martinez TJ (2003). Bull Korean Chem Soc 24:712–716

    Article  CAS  Google Scholar 

  23. Ben-Nun M, Martinez TJ (2002). In: Advances in chemical physics, vol 121. pp 439–512

  24. Hack MD, Wensmann AM, Truhlar DG, Ben-Nun M, Martinez TJ (2001). J Chem Phys 115:1172–1186

    Article  CAS  Google Scholar 

  25. Ben-Nun M, Martinez TJ (2000). Chem Phys 259:237–248

    Article  CAS  Google Scholar 

  26. Ben-Nun M, Quenneville J, Martinez TJ (2000). J Phys Chem A 104:5161–5175

    Article  CAS  Google Scholar 

  27. Ben-Nun M, Martinez TJ (2000). J Am Chem Soc 122:6299–6300

    Article  CAS  Google Scholar 

  28. Ben-Nun M, Martinez TJ (2000). J Chem Phys 112:6113–6121

    Article  CAS  Google Scholar 

  29. Ben-Nun M, Martinez TJ (1999). J Phys Chem A 103:10517–10527

    Article  CAS  Google Scholar 

  30. Nakamura H, Truhlar DG (2002). J Chem Phys 117:5576–5593

    Article  CAS  Google Scholar 

  31. Nakamura H, Truhlar DG (2001). J Chem Phys 115:10353–10372

    Article  CAS  Google Scholar 

  32. Atchity GJ, Ruedenberg K (1999). J Chem Phys 111:2910–2920

    Article  CAS  Google Scholar 

  33. Atchity GJ, Ruedenberg K (1999). J Chem Phys 110:4208–4212

    Article  CAS  Google Scholar 

  34. Atchity GJ, Ruedenberg K (1997). Theor Chem Acc 97:47–58

    CAS  Google Scholar 

  35. Ruedenberg K, Atchity GJ (1993). J Chem Phys 99:3799–3803

    Article  CAS  Google Scholar 

  36. Atchity GJ, Xantheas SS, Ruedenberg K (1991). J Chem Phys 95:1862–1876

    Article  Google Scholar 

  37. Fuss W, Kompa KL, Lochbrunner S, Muller AM (1997). Chem Phys Phys Chem 101:500–509

    CAS  Google Scholar 

  38. Lawley KP (eds). (1987). Ab initio methods in quantum chemistry - I, vols 67. Wiley, Chichester England

    Google Scholar 

  39. Lawley KP (eds). (1987). Ab initio methods in quantum chemistry - II, vols 69. Wiley, Chichester England

    Google Scholar 

  40. Roos BO (1987). In: Lawley KP (ed). ab initio methods in quantum chemistry - II. Wiley, New York, pp 399–446

  41. Roos BO (1980). Int J Quantum Chem 14:175

    CAS  Google Scholar 

  42. Siegbahn PEM, Almlof J, Heiberg A, Roos BO (1981). J Chem Phys 74:2384

    Article  CAS  Google Scholar 

  43. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, et al (1998). Gaussian 98. Gaussian Inc, Pittsburgh

    Google Scholar 

  44. Andersson K, Blomberg MRA, Fülscher MP, Karlström G, Lindh R, et al (1999). MOLCAS. Lund University, Lund

    Google Scholar 

  45. Andersson K, Malmqvist P-Å, Roos BO (1992). J Chem Phys 96:1218

    Article  CAS  Google Scholar 

  46. McDouall JJW, Peasley K, Robb MA (1988). Chem Phys Lett 148:183–189

    Article  CAS  Google Scholar 

  47. Finley J, Malmqvist PA, Roos BO, Serrano-Andrés L (1998). Chem Phys Lett 288:299–306

    Article  CAS  Google Scholar 

  48. Nakano H, Uchiyama R, Hirao K (2002). J Comput Chem 23:1166–1175

    Article  PubMed  CAS  Google Scholar 

  49. Bernardi F, Olivucci M, Robb MA (1996). Chem Soc Rev 25:321

    Article  CAS  Google Scholar 

  50. Yarkony DR (1996). J Phys Chem 100:18612

    Article  CAS  Google Scholar 

  51. Yarkony DR (1998). Acc Chem Res 31:511

    Article  CAS  Google Scholar 

  52. Desouter-Lecomte M, Lorquet JC (1979). J Chem Phys 71:4391

    Article  CAS  Google Scholar 

  53. Gilbert A, Baggott J (1991). Essentials of Molecular Photochemistry. Blackwell, Oxford

    Google Scholar 

  54. Klessinger M, Michl J (1994). Excited states and photochemistry of organic molecules. VCH Publishers, New York

    Google Scholar 

  55. Michl J, Bonacic-Koutecky V (1990). Electronic aspects of organic photochemistry. Wiley, New York

    Google Scholar 

  56. Bernardi F, Olivucci M, Michl J, Robb MA (1997). The Spectrum 9:1

    Google Scholar 

  57. Natansohn A, Rochon P (2002). Chem Rev 102:4139

    Article  PubMed  CAS  Google Scholar 

  58. Hampp N (2000). Chem Rev 100:1755

    Article  PubMed  CAS  Google Scholar 

  59. Van der Lugt WTAM, Oosterhoff LJ (1969). J Am Chem Soc 91:6042

    Article  Google Scholar 

  60. Zimmerman HE (1966). J Am Chem Soc 88:1566

    Article  CAS  Google Scholar 

  61. Teller E (1969). Israelian J Chem 7:227

    CAS  Google Scholar 

  62. Michl J (1972). Mol Photochem 4:243

    CAS  Google Scholar 

  63. Garavelli M, Bernardi F, Robb MA, Olivucci M (2002). Int J Photoenergy 4:57–68

    CAS  Google Scholar 

  64. Truhlar DG, Mead CA (2003). Phys Rev A 68:32501

    Article  CAS  Google Scholar 

  65. Bearpark MJ, Robb MA, Schlegel HB (1994). Chem Phys Lett 223:269–274

    Article  CAS  Google Scholar 

  66. Gonzalez C, Schlegel HB (1990). J Phys Chem 94:5523

    Article  CAS  Google Scholar 

  67. Foresman JB, Aeleen F (1996). Exploring chemistry with electronic structure methods. Gaussian Inc, Pittsburgh

    Google Scholar 

  68. Schlegel HB (1987). In: Lawley KP (ed). Ab initio methods in quantum chemistry. Wiley, New York, pp 249–286

  69. Garavelli M, Celani P, Fato M, Bearpark MJ, Smith BR, et al (1997). J Phys Chem A 101:2023–2032

    Article  CAS  Google Scholar 

  70. Celani P, Robb MA, Garavelli M, Bernardi F, Olivucci M (1995). Chem Phys Lett 243:1–8

    Article  CAS  Google Scholar 

  71. Pu JZ, Gao JL, Truhlar DG (2004). J Phys Chem A 108:632–650

    Article  CAS  Google Scholar 

  72. Gao JL, Truhlar DG (2002). Ann Rev Phys Chem 53:467–505

    Article  CAS  Google Scholar 

  73. Mo YR, Alhambra G, Gao JL (2000). Acta Chimica Sinica 58:1504–1510

    CAS  Google Scholar 

  74. Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993). J Phys Chem 97:10269

    Article  CAS  Google Scholar 

  75. Ferré N, Cembran A, Garavelli M, Olivucci M (2004). Theor Chem Acc (in press).

  76. Hudson BS, Kohler BE, Schulten K (1982). In: excited states. Academic Press, New York, pp 1–99

  77. Celani P, Garavelli M, Ottani S, Bernardi F, Robb MA, Olivucci M (1995). J Am Chem Soc 117:11584–11585

    Article  CAS  Google Scholar 

  78. Garavelli M, Smith BR, Bearpark MJ, Bernardi F, Olivucci M, Robb MA (2000). J Am Chem Soc 122:5568–5581

    Article  CAS  Google Scholar 

  79. Garavelli M, Celani P, Bernardi F, Robb MA, Olivucci M (1997). J Am Chem Soc 119:11487–11494

    Article  CAS  Google Scholar 

  80. Garavelli M, Bernardi F, Olivucci M, Vreven T, Klein S, et al (1998). Faraday Discuss 110:51–70

    Article  CAS  Google Scholar 

  81. Garavelli M, Frabboni B, Fato M, Celani P, Bernardi F, et al (1999). J Am Chem Soc 121:1537–1545

    Article  CAS  Google Scholar 

  82. Garavelli M, Page CS, Celani P, Olivucci M, Schmid WE, et al (2001). J Phys Chem A 105:4458–4469

    Article  CAS  Google Scholar 

  83. Garavelli M, Bernardi F, Olivucci M, Bearpark MJ, Klein S, Robb MA (2001). J Phys Chem A 105:11496–11504

    Article  CAS  Google Scholar 

  84. Fuss W, Haas Y, Zilberg S (2000). Chem Phys 259:273–295

    Article  CAS  Google Scholar 

  85. Garavelli M, Celani P, Bernardi F, Robb MA, Olivucci M (1997). J Am Chem Soc 119:6891–6901

    Article  CAS  Google Scholar 

  86. Garavelli M, Vreven T, Celani P, Bernardi F, Robb MA, Olivucci M (1998). J Am Chem Soc 120:1285–1288

    Article  CAS  Google Scholar 

  87. Gonzalez-Luque R, Garavelli M, Bernardi F, Merchan M, Robb MA, Olivucci M (2000). Proc Natl Acad Sci USA 97:9379–9384

    Article  PubMed  CAS  Google Scholar 

  88. Ruiz DS, Cembran A, Garavelli M, Olivucci M, Fuss W. (2002). Photochem Photobiol 76:622–633

    Article  PubMed  CAS  Google Scholar 

  89. Garavelli M, Celani P, Yamamoto N, Bernardi F, Robb MA, Olivucci M (1996). J Am Chem Soc 118:11656–11657

    Article  CAS  Google Scholar 

  90. Garavelli M, Bernardi F, Celani P, Robb MA, Olivucci M (1998). J Photochem Photobiol A-Chem 114:109–116

    Article  CAS  Google Scholar 

  91. Gerhartz W, Poshusta RD, Michl J (1977). J Am Chem Soc 99:4263–4271

    Article  CAS  Google Scholar 

  92. Garavelli M, Bernardi F, Moliner V, Olivucci M (2001). Angewandte Chemie-International Edition 40:1466–1468

    Article  CAS  Google Scholar 

  93. Garavelli M, Bernardi F, Cembran A, Castano O, Frutos LM, et al (2002). J Am Chem Soc 124:13770–13789

    Article  PubMed  CAS  Google Scholar 

  94. Palmer IJ, Ragazos IN, Bernardi F, Olivucci M, Robb MA (1993). J Am Chem Soc 115:673–682

    Article  CAS  Google Scholar 

  95. Gilbert A (1995). In: Horspool WM, Song P-S (eds). CRC handbook of organic photochemistry and photobiology. CRC Press, Boca Raton, pp 229–236

  96. Hopf H, Lipka H, Traetteberg M (1994). Angewandte Chemie-International Edition in English 33:204–205

    Article  Google Scholar 

  97. Maier G (1988). Angewandte Chemie-International Edition 27: 309–335

    Article  Google Scholar 

  98. Bryce-Smith D, Gilbert A (1976). Tetrahedron 32:1309

    Article  CAS  Google Scholar 

  99. Zimmermann HE, Grunewald GL (1966). J Am Chem Soc 88:183–186

    Article  Google Scholar 

  100. Zimmermann HE, Iwamura H (1970). J Am Chem Soc 92:2015–2022

    Article  Google Scholar 

  101. Turro NJ, Liu J-M, Zimmerman HE, Factor RE (1980). J Org Chem 45:3511–3513

    Article  CAS  Google Scholar 

  102. Kandori H, Shichida Y, Yoshizawa T (2001). Biochem-Moscow 66:1197–1209

    Article  CAS  Google Scholar 

  103. Needleman R (1995). In: Horspool WM, Song P-S (eds). CRC handbook of organic photochemistry and photobiology. CRC Press, Boca Raton, pp 1508–1515

  104. Ottolenghi M, Sheves M (1995). Israel J Chem 35:U3-U

    Google Scholar 

  105. Wald G (1968). Science 162:230–239

    PubMed  CAS  Google Scholar 

  106. Mathies R, Lugtenburg J (2000). In: Stavenga DG, DeGrip WJ, Pugh ENJ (eds). Molecular mechanism of vision. Elsevier, New York, pp 55–90

  107. Yoshizawa T, Kuwata O (1995). In: Horspool WM, Song P-S (eds). CRC handbook of organic photochemistry and photobiology. CRC Press, Boca Raton, pp 1493–1499

  108. De Vico L, Page CS, Garavelli M, Bernardi F, Basosi R, Olivucci M (2002). J Am Chem Soc 124:4124–4134

    Article  PubMed  CAS  Google Scholar 

  109. Ruhman S, Hou BX, Friedman N, Ottolenghi M, Sheves M (2002). J Am Chem Soc 124:8854–8858

    Article  PubMed  CAS  Google Scholar 

  110. Garavelli M, Negri F, Olivucci M (1999). J Am Chem Soc 121:1023–1029

    Article  CAS  Google Scholar 

  111. Cembran A, Bernardi F, Olivucci M, Garavelli M (2003). J Am Chem Soc 125:12509–12519

    Article  PubMed  Google Scholar 

  112. One possible reason for the success of model 3 is that retinal PSB11 has a highly twisted (ca. 60°). β-ionone ring both in solution (see Albeck A, Livnah N, Gottlieb H, Sheves M (1992). J Am Chem Soc 114:2400). and in Rh (see Teller DC, Okada T, Behnke CA, Palczewski K, Stenkamp RE (2001). Biochemistry 40:7761–7772). This prevents efficient conjugation of the β-ionone double bond with the rest of the conjugated chain, making 3 a realistic model for retinal PSBs

  113. Kobayashi T, Saito T, Ohtani H (2001). Nature 414:531–534

    Article  PubMed  CAS  Google Scholar 

  114. Hou B, Friedman N, Ruhman S, Sheves M, Ottolenghi M (2001). J Phys Chem B 105:7042–7048

    Article  CAS  Google Scholar 

  115. Haran G, Morlino EA, Matthes J, Callender RH, Hochstrasser RM (1999). J Phys Chem A 103:2202–2207

    Article  CAS  Google Scholar 

  116. Logunov SL, Volkov VV, Braun M, El-Sayed MA (2001). Proc Natl Acad Sci USA 98:8475–8479

    Article  PubMed  CAS  Google Scholar 

  117. Kandori H, Furutani Y, Nishimura S, Shichida Y, Chosrowjan H, et al (2001). Chem Phys Lett 334:271–276

    Article  CAS  Google Scholar 

  118. Cembran A, Bernardi F, Olivucci M, Garavelli M (2004). J Am Chem Soc 126:16018–16037

    Article  PubMed  CAS  Google Scholar 

  119. Weiss RM, Warshel A (1979). J Am Chem Soc 101:6131–6133

    Article  CAS  Google Scholar 

  120. Sheves M, Kohne B, Mazur J (1983). J Chem Soc, Chemical Commun:1232–1234

    Google Scholar 

  121. Sheves M, Nakanishi K, Honig B (1979). J Am Chem Soc 101:7086–7088

    Article  CAS  Google Scholar 

  122. Nakanishi K, Balogh-Nair V, Arnaboldi M, Tsujimoto K, Honig B (1980). J Am Chem Soc 102:7945–7947

    Article  CAS  Google Scholar 

  123. Motto MG, Sheves M, Tsujimoto K, Balogh-Nair V, Nakanishi K (1980). J Am Chem Soc 102:7947–7949

    Article  CAS  Google Scholar 

  124. Honig B, Dinur U, Nakanishi K, Balogh-Nair V, Gawinowicz MA, et al (1979). J Am Chem Soc 101:7084–7086

    Article  CAS  Google Scholar 

  125. Honig B, Greenberg AD, Dinur U, Ebrey TG (1976). Biochemistry 15(21):4593

    Article  PubMed  CAS  Google Scholar 

  126. Birge RR, Hubbard LM (1980). J Am Chem Soc 102:2195– 2205

    Article  CAS  Google Scholar 

  127. Bonacic-Koutecky V, Koutecky J, Michl J (1987). Angewandte Chemie-International Edition 26:170–189

    Article  Google Scholar 

  128. There is general agreement of all multi reference methods that the covalent state energy is reduced much faster during geometrical relaxation: (a). Strodel P, Tavan P (2002). J Chem Phys 117:4677. (b). Nakayama K, Nakano H, Hirao K (1998). Int J Quantum Chem 66:157

  129. Atchity GJ, Xantheas SS, Ruedenberg K (1991). J Chem Phys 95:1862

    Article  Google Scholar 

  130. Hamm P, Zurek M, Roschinger T, Patzelt H, Oesterhelt D, Zinth W (1996). Chem Phys Lett 263:613–621

    Article  CAS  Google Scholar 

  131. Kandori H, Sasabe H, Nakanishi K, Yoshizawa T, Mizukami T, Shichida Y (1996). J Am Chem Soc 118:1002–1005

    Article  CAS  Google Scholar 

  132. Schoenlein RW, Peteanu LA, Mathies RA, Shank CV (1991). Science 254:412–415

    PubMed  CAS  Google Scholar 

  133. Mathies RA, Cruz CHB, Pollard WT, Shank CV (1988). Science 240:777–779

    PubMed  CAS  Google Scholar 

  134. Dartnall HJA (1967). Vis Res 8:339–358

    Article  Google Scholar 

  135. Logunov SL, Song L, ElSayed MA (1996). J Phys Chem 100:18586–18591

    Article  CAS  Google Scholar 

  136. Kandori H, Katsuta Y, Ito M, Sasabe H (1995). J Am Chem Soc 117:2669–2670

    Article  CAS  Google Scholar 

  137. Becker RS, Freedman KA (1985). J Am Chem Soc 107:1477– 1485

    Article  CAS  Google Scholar 

  138. Koyama Y, Kubo K, Komori M, Yasuda H, Mukai Y (1991). Photochem Photobiol 54:433–443

    PubMed  CAS  Google Scholar 

  139. Andruniow T, Ferré N, Olivucci M (2004). Proc Natl Acad Sci USA 101:17908–17913

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Garavelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garavelli, M. Computational Organic Photochemistry: Strategy, Achievements and Perspectives. Theor Chem Acc 116, 87–105 (2006). https://doi.org/10.1007/s00214-005-0030-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-005-0030-z

Keywords

Navigation