Skip to main content
Log in

Simple analysis of atomic reactivity: Thomas–Fermi theory with nonergodicity and gradient correction

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Covalent bonding has been found to be related to the relaxation of dynamical constraints on electronic motion in atoms and molecules. The corresponding strain energy in an atom is therefore a measure of its inherent reactivity. Here, such reactivities of the atoms H through Ne are estimated by the use of the Thomas–Fermi density functional theory which can be simply implemented using parametrized exponential electron densities in two different forms—the traditional form assuming complete ergodicity and a modified form which accounts for nonergodicity and therefore strain. The Thomas–Fermi functional is amended by the incorporation of gradient correction of the kinetic energy according to the von Weizsäcker prescription. This correction, implemented within the nonergodic form of the Thomas–Fermi theory, is scaled to yield total atomic energies in agreement with the Hartree–Fock results. The scaling factor shows a variation from around 0.07 for Be to 0.1 for Ne. The reactivity, measured by the stabilization brought by going to the ergodic form of quantization within the Thomas–Fermi theory, is zero for He and Ne and shows a broad peak around oxygen in apparent agreement with chemical intuition. Molecular bonding efficiencies are studied for some small molecules and are found to be relatively large for hydrides and smaller for diatomic molecules such as Be2 and F2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Esterhuysen C, Frenking G (2004). Theor Chem Acc 111:381

    CAS  Google Scholar 

  • Nordholm S (1987). J Chem Phys 86:363

    Article  CAS  Google Scholar 

  • Nordholm S (1988). J Chem Educ 65:581

    CAS  Google Scholar 

  • Lewis GN (1916). J Am Chem Soc 38:762

    Article  CAS  Google Scholar 

  • Moore WJ. (1972) Physical chemistry, 5th edn. Prentice Hall, New Jersey

    Google Scholar 

  • Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  • Gunnarsson O, Lundqvist BI (1976). Phys Rev B 13:4274

    Article  CAS  Google Scholar 

  • Vosko SH, Wilk L, Nusair M (1980). Can J Phys 58:1200

    Article  CAS  Google Scholar 

  • Becke AD (1993). J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  • Kohn W, Sham LJ (1965). Phys Rev 140:A1133

    Article  Google Scholar 

  • Thomas LH (1927). P Camb Phils Soc 23:542

    Article  CAS  Google Scholar 

  • Fermi E (1927). Rend Acad Lincei 6:602

    CAS  Google Scholar 

  • Teller E (1962). Rev Mod Phys 34:627

    Article  CAS  Google Scholar 

  • Hellman H (1928). Z Phys 48:73

    Article  Google Scholar 

  • Hellman H (1937) Einfürung in die Quantum Chemie. Franz Deuticke, Leipzig

    Google Scholar 

  • Ruedenberg K (1962). Rev Mod Phys 34:326

    Article  CAS  Google Scholar 

  • Ruedenberg K (1975) In: Chalvet O, Daudel R (eds) Localization and delocalization in quantum chemistry. Reidel, Dordrecht, p 223

  • Bacskay GB, Reimers JR, Nordholm S (1997). J Chem Educ 74:1494

    Article  CAS  Google Scholar 

  • von Weizsäcker CF (1935). Z Phys 96:431

    Article  Google Scholar 

  • Cummins PL, Nordholm S (1984). J Chem Phys 80:272

    Article  CAS  Google Scholar 

  • Yang W, Parr RG, Lee C (1986). Phys Rev A 34:4586

    Article  PubMed  CAS  Google Scholar 

  • Chan GK, Cohen AJ, Handy NC (2001). J Chem Phys 114:631

    Article  CAS  Google Scholar 

  • Fraga S, Karwowski J, Saxena KMS (1976) Handbook of atomic data. Elsevier, Amsterdam

    Google Scholar 

  • Lide DR. ed. (2003) CRC handbook of chemistry and physics, 84th edn. CRC, Boca Raton

    Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA. (1998). Gaussian 98, Rev. A.9. Gaussian, Pittsburgh

    Google Scholar 

  • Baboul AG, Curtiss LA, Redfern PC, Raghavachari K (1999). JChem Phys 110:7650

    CAS  Google Scholar 

  • Burdett JK (1997) Chemical bonds—a dialog, chap 1. Wiley, Chichester

    Google Scholar 

  • Sanderson RT (1983) Polar covalence. Academic, New York

    Google Scholar 

  • Parr RG, Donnelly RA, Levy M, Palke WE (1978). J Chem Phys 68:3801

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Eek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eek, W., Nordholm, S. Simple analysis of atomic reactivity: Thomas–Fermi theory with nonergodicity and gradient correction. Theor Chem Acc 115, 266–273 (2006). https://doi.org/10.1007/s00214-005-0020-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-005-0020-1

Keywords

Navigation