Theoretical Chemistry Accounts

, Volume 116, Issue 1–3, pp 169–182 | Cite as

Understanding the chemical physics of nucleation

Regular Article

Abstract

Observation and theory have steadily progressed our understanding of nucleation phenomena over the past 280 years. However, even more questions remain concerning the governing processes and mechanisms. The inherent instability and sensitivity of nucleation places a high premium on theoretical accuracy and experimental purity and similarly makes interpretation of both more challenging. The objective of the present paper is to contribute to the understanding of nucleation kinetics and thermodynamics with emphasis on cluster chemical physics within the context of Dynamical Nucleation Theory. Our hope is to share some insights that we have gained over the past several years concerning rate constants, molecular interactions, statistical mechanics and their consequences on nucleation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fahrenheit DG (1724). Philos Trans Roy Soc 39:78Google Scholar
  2. Lowitz JT (1795). Crells Chemische Annalen 1:3Google Scholar
  3. Laplace P (1806) Traite de Mechanique Celeste 4; von Helmholtz R (1886) Ann Physik 27:508Google Scholar
  4. Gay-Lussac JL (1813). Ann de Chimie 87:225Google Scholar
  5. Pasteur L (1848). Ann Chim Phys. 24:442Google Scholar
  6. Gernez D (1866). Compt Rend 63:843Google Scholar
  7. Gibbs JW (1876). Trans Connect Acad 3:108Google Scholar
  8. Coulier PJ (1875). J de Pharmacie et de Chemie 22:165Google Scholar
  9. Aitken J (1880). Proc Roy Soc 11:14Google Scholar
  10. Wilson CTR (1897) Trans Roy Soc (London) A189:265; Wilson CTR (1900) Trans Roy Soc (London) A193:289Google Scholar
  11. Ostwald W (1896-1902) Lehrbuch Allgem. Chem., W. Engelmann, Leiprig, II, 2.Google Scholar
  12. Volmer M, Weber A (1926). Z Phys Chem 119:277Google Scholar
  13. Volmer M (1939) Kinetik der Phasenbildung. Theodor Steinkopff Verlag, DresdenGoogle Scholar
  14. Farkas L (1927). Z Phys Chem A125:236Google Scholar
  15. Becker R, Doering W (1935) Ann Phys 24:719; Becker R (1949) Discuss Faraday Soc 5:55Google Scholar
  16. Band W (1939). J Chem Phys 6:654CrossRefGoogle Scholar
  17. Frenkel J (1939) J Chem Phys 7:200; Frenkel J (1955) Kinetic theory of liquids. Dover, New YorkGoogle Scholar
  18. Gernez D (1865). Compt Rend 60:833Google Scholar
  19. Arrhenius S (1889). Z Phys Chem 4:226Google Scholar
  20. Ostwald WF (1897). Z Physik Chem Leipzig 22:289Google Scholar
  21. Mikheev VB, Irving PM, Laulainen NS, Barlow SE, Pervukhin VV (2002). J Chem Phys 116:10772CrossRefGoogle Scholar
  22. Sioutas C, McMurry PH, Biswas P, Hinds WC, Wilson WE (2004) J Nanoparticle Res 6:319; Voisin D, Smith JN, Sakurai H, McMurry PH, Eisele FL (2003) Aerosol Sci Technol 37:471; Smith JN, Moore KF, McMurry PH, Eisele FL (2004) Aerosol Sci Technol 38:100Google Scholar
  23. Mullins WW, Sekerka RF (1963). J Appl Phys 34:323CrossRefGoogle Scholar
  24. Mullins WW, Sekerka RF (1964). J Appl Phys 35:444CrossRefGoogle Scholar
  25. Berg WF (1938). Proc Roy Soc A 164:79Google Scholar
  26. Langer JS (1980). Rev Mod Phys 52:1CrossRefGoogle Scholar
  27. Caroli B, Caroli C, Roulet B (1992) Instabilities of planar solidification front, in Solids far from Equilibrium. Cambridge University Press, CambridgeGoogle Scholar
  28. Zettlemoyer AC (1969) Nucleation. Marcel Dekker, New York; Abraham FF (1974) Homogeneous nucleation theory. Academic, New YorkGoogle Scholar
  29. Manna L, Milliron DJ, Meisel A, Scher EC, Alivisatos AP (2003) Nat Mater 2:382; Manna L, Scher EC, Alivisatos AP (2000) J Am Chem Soc 122:12700Google Scholar
  30. Zeldovich J (1942). J Exp Theor Phys 12:525Google Scholar
  31. Kulmala M, Korhonen P, Napari I, Karlsson A, Berresheim H, O’Dowd CD (2002). J Geophys Res 107:8111CrossRefGoogle Scholar
  32. Kulmala M, Vehkamaki H, Petaja T, Dal Maso M, Lauri A, Kerminen VM, Birmili W, McMurry PH (2004). J Aerosol Sci 35:143CrossRefGoogle Scholar
  33. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, New YorkGoogle Scholar
  34. Frenkel D (1993): In van Gunsteren WF, Weiner PK, Wilkinson AJ (ed) Computer simulation of biomolecular systems: theoretical and experimental applications, vol 2. ESCOM, Leiden, The Netherlands, p 37; Frenkel D, Smit B (1996) Understanding molecular simulation: from algorithms to applications. Academic, San DiegoGoogle Scholar
  35. Lee JK, Barker JA, Abraham FF (1973). J Chem Phys 58:3166CrossRefGoogle Scholar
  36. Kathmann SM, Hale BN (2001). J Phys Chem B 105:11719CrossRefGoogle Scholar
  37. Hale BN (1996) Aust J Phys 49:425; Kusaka I, Wang Z-G, Seinfeld JH (1998) J Chem Phys 108:3416Google Scholar
  38. Kusaka I, Oxtoby D (1999). J Chem Phys 110:5249CrossRefGoogle Scholar
  39. Kusaka I, Wang Z, Seinfeld J (1995) J Chem Phys 103:8993; Kusaka I, Wang Z, Seinfeld J (1995) J Chem Phys 102:913; Kusaka I, Wang Z-G, Seinfeld JH (1998) J Chem Phys 108:6829; Kusaka I, Wang Z-G, Seinfeld JH (1998) J Chem Phys 108:3416; Oh K, Zeng X, Reiss H (1997) J Chem Phys 107:1242; Oh K, Zeng X (1999) J Chem Phys 110:4471; Schaaf P, Senger B, Reiss H (1997) J Phys Chem 101:8740; Schaaf P, Senger B, Voegel J-C, Reiss H (1999) Phys Rev E 60:771; Schaaf P, Senger B, Voegel JC, Bowles RK, Reiss H (2001) J Chem Phys 114:8091; Suzuki K (1996): In Kulmala M, Wagner PE (ed) Nucleation and atmospheric aerosols. Pergamon, New York; Senger B, Schaaf P, Corti D, Bowles R, Voegel J-C, Reiss H (1999) J Chem Phys 110:6421; Senger B, Schaaf P, Corti D, Bowles R, Pointu D, Voegel J-C, Reiss H (1999) J Chem Phys 110:6438Google Scholar
  40. Schenter GK, Kathmann SM, Garrett BC (1999) Phys Rev Lett 82:3484; Schenter GK, Kathmann SM, Garrett BC (1999). J Chem Phys 110:7951Google Scholar
  41. Schenter GK, Kathmann SM, Garrett BC (2002). J Chem Phys 116:4275CrossRefGoogle Scholar
  42. Schenter GK (2002). J Chem Phys 117:6573CrossRefGoogle Scholar
  43. Merikanto J, Vehkamaki H, Zapadinsky E (2004). J Chem Phys 121:914CrossRefPubMedGoogle Scholar
  44. Hale BN, Ward R (1982) J Stat Phys 28:487; Vehkamaki H, Ford IJ (1999) Phys Rev E 59:6483; Vehkamaki H, Ford IJ (2000) J Chem Phys 112:4193; Vehkamaki H, Ford IJ (2000) J Chem Phys 113:3261Google Scholar
  45. Reiss H, Katz JL, Cohen ET (1968) J Chem Phys 48:5553; Reiss H, Tabazadeh A, Talbot J (1990) J Chem Phys 92:1266Google Scholar
  46. Garcia N, Soler Torroja JM (1981). Phys Rev Lett 47:186CrossRefGoogle Scholar
  47. Debenedetti P, Reiss H (1998) J Chem Phys 108:5498; Debenedetti P, Reiss H (1999) J Chem Phys 111:3771Google Scholar
  48. Stillinger FH (1963). J Chem Phys 38:1486CrossRefGoogle Scholar
  49. Yasuoka K, Matsumoto M (1998). J Chem Phys 109:8463CrossRefGoogle Scholar
  50. Zeng XC, Oxtoby DW (1991) J Chem Phys 95:5940; Zeng XC, Oxtoby DW (1991) J Chem Phys 94:4472; Laaksonen A, Talanquer V, Oxtoby DW (1995) Ann Rev of Phys Chem 46:489; Oxtoby DW (1992) J Phys: Condensed Matter 4:7627; Oxtoby DW, Evans R (1988) J Chem Phys 89:7521; Cahn JW, Hilliard JE (1959) J Chem Phys 31:688Google Scholar
  51. ten Wolde P, Frenkel D (1998) J Chem Phys 109:9901; ten Wolde P, Ruiz-Montero M, Frenkel D (1999) J Chem Phys 110:1591Google Scholar
  52. ten Wolde PR, Ruiz-Montero MJ, Frenkel D (1996). J Chem Phys 104:9932CrossRefGoogle Scholar
  53. Reiss, H (2004) In: Reiss H (ed) Critique of molecular theories of nucleation. AIP: Rolla, Missouri, Vol 534, pp 181Google Scholar
  54. Kathmann SM, Schenter GK, Garrett BC (1999). J Chem Phys 111:4688CrossRefGoogle Scholar
  55. Kathmann SM, Schenter GK, Garrett BC (2002). J Chem Phys 116:5046CrossRefGoogle Scholar
  56. Kathmann SM, Schenter GK, Garrett BC (2004). J Chem Phys 120:9133PubMedCrossRefGoogle Scholar
  57. Kathmann SM, Schenter GK, Garrett BC (2005). Phys Rev Lett 94:116104PubMedCrossRefGoogle Scholar
  58. Heneghan AF, Wilson PW, Wang G, Haymet ADJ (2001). J Chem Phys 115:7599CrossRefGoogle Scholar
  59. Kathmann S, Schenter GK, Garrett BC (1999). J Chem Phys 111:4688CrossRefGoogle Scholar
  60. Ellerby HM (1994) Phys Rev E 49:4287; Ellerby HM, Weakliem CL, Reiss H (1991) J Chem Phys 95:9209; Ellerby HM, Weakliem CL, Reiss H (1992) J Chem Phys 97:5766; Weakleim CL, Reiss H (1993) J Chem Phys 99:5374; Weakliem CL, Reiss H (1994) J Chem Phys 101:2398Google Scholar
  61. Dang LX, Chang T-M (1997). J Chem Phys 106:8149CrossRefGoogle Scholar
  62. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983). J Chem Phys 79:926CrossRefGoogle Scholar
  63. Reinhardt WP, Hunter JE III (1992) J Chem Phys 97:1599; Reinhardt WP, Miller MA, Amon LM (2001) Acc Chem Res 34:607; Hunter III, JE, Reinhardt WP (1995) J Chem Phys 103:8627; Hunter III, JE, Reinhardt WP, Davis TF (1993) J Chem Phys 99:6856; Hogenson GJ, Reinhardt WP (1995) J Chem Phys 102:4151Google Scholar
  64. Clausius R (1879) The mechanical theory of heat. MacMillan, LondonGoogle Scholar
  65. Cahan D (1993) Hermann von Helmholtz and the foundations of nineteenth century science. University of California Press, BerkeleyGoogle Scholar
  66. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953). J Chem Phys 21:1087CrossRefGoogle Scholar
  67. Schrodinger E (1989) Statistical thermodynamics. Dover, NEW YorkGoogle Scholar
  68. Vehkamaki H, Napari I, Kulmala M (2004) Phys Rev Lett 93:149501; Ianni J, Bandy AR (1999) J Phys Chem 103:2801; Ianni J, Bandy AR (2000) J Mol Struct 497:19; Re S, Osamura Y, Morokuma K (1999) J Phys Chem A 103:3535Google Scholar
  69. Viisanen Y, Strey R, Reiss H (1993) J Chem Phys 99:4680; Viisanen Y, Strey R, Reiss H (2000) J Chem Phys 112:8205Google Scholar
  70. Mikheev VB, Irving PM, Laulainen NS, Barlow SE, Pervukhin VV (2001). J Chem Phys 116:10772CrossRefGoogle Scholar
  71. Feyereisen MW, Feller DF, Dixon DA (1996). J Phys Chem 100:2993CrossRefGoogle Scholar
  72. Dillmann A, Meier GEA (1991). J Chem Phys 94:3872CrossRefGoogle Scholar
  73. Mandel MJ, McTague JP, Rahman A (1976) J Chem Phys 64:3699; Nose S, Yonezawa F (1986) J Chem Phys 84:1803; Esselink K, Hilbers PAJ, van Beest BWH (1994) J Chem Phys 101:9033; Huang J, Zhu X, Bartell LS (1998) J Phys Chem A 102:2708; Monson PA, Kofke DA (2000) Adv Chem Phys 115:113; Matsumoto M, Saito S, Ohmine I (2002) Nature 416:409Google Scholar
  74. Anwar J, Boateng PK (1998). J Am Chem Soci 120:9600CrossRefGoogle Scholar
  75. Mucha M, Jungwirth P (2003). J Phys Chem B 107:8271CrossRefGoogle Scholar
  76. Ferrario M, Ciccotti G, Spohr E, Cartailler T, Turq P (2002). J Chem Phys 117:4947CrossRefGoogle Scholar
  77. Smith DE, Dang LX (1994). J Chem Phys 100:3757CrossRefGoogle Scholar
  78. Hynes JT (1985) The theory of chemical reaction dynamics. Chemical Rubber, Boca RatonGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Chemical Sciences DivisionPacific Northwest National LaboratoryRichlandUSA

Personalised recommendations