Skip to main content
Log in

Accurate partial atomic charges for high-energy molecules using class IV charge models with the MIDI! basis set

  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract.

We have recently developed a new class IV charge model for calculating partial atomic charges in molecules. The new model, called charge model 3 (CM3), was parameterized for calculations on molecules containing H, Li, C, N, O, F, Si, S, P, Cl, and Br by Hartree–Fock theory and by hybrid density functional theory (HDFT) based on the modified Perdew–Wang density functional with several basis sets. In the present article, we extend CM3 for calculating partial atomic charges by Hartree–Fock theory with the economical but well balanced MIDI! basis set. Then, using a test set of accurate dipole moments for molecules containing nitramine functional groups (which include many high-energy materials), we demonstrate the utility of several parameters designed to improve the charges in molecules containing both N and O atoms. We also show that one of our most recently developed CM3 models that is designed for use with wave functions calculated at the mPWXPW91/MIDI! level of theory (where X denotes a variable percentage of Hartree–Fock exchange) gives accurate charge distributions in nitramines without additional parameters for N and O. To demonstrate the reliability of partial atomic charges calculated with CM3, we use these atomic charges to calculate polarization free energies for several nitramines, including the commonly used explosives 1,3,5-trinitro-s-triazine (RDX) and 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (HNIW), in nitromethane. These polarization energies are large and negative, indicating that electrostatic interactions between the charge distribution of the molecule and the solvent make a large contribution to the free energy of solvation of nitramines. By extension, the same conclusion should apply to solid-state condensation. Also, in contrast to some other charge models, CM3 yields atomic charges that are relatively insensitive to the presence of buried atoms and small conformational changes in the molecule, as well as to the level of treatment of electron correlation. This type of charge model should be useful in the future development of solvation models and force fields designed to estimate intramolecular interactions of nitramines in the condensed phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cioslowski J (1998) In: Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer III HF (eds) Encyclopedia of computational chemistry, vol 5. Wiley, New York, p 892

  2. King WT, Mast GB, Blanchette PP (1971) J Chem Phys 56:4440

    Google Scholar 

  3. Coppens P (1992) Annu Rev Phys Chem 43:663

    Google Scholar 

  4. Person WB, Newton JH (1974) J Chem Phys 61:1040

    Google Scholar 

  5. King WT, Mast GB (1976) J Phys Chem 80:2521

    Google Scholar 

  6. Jolly WL, Perry WB (1973) J Am Chem Soc 95:5442

    Google Scholar 

  7. Jolly WL, Perry WB (1974) Inorg Chem 13:2686

  8. Wiberg KB, Wendoloski J (1978) J Am Chem Soc 100:723

    Google Scholar 

  9. Cioslowski J (1989) J Am Chem Soc 111:8333

    Google Scholar 

  10. Cioslowski J, Hay PJ, Ritchie JP (1990) J Phys Chem 94:148

    Google Scholar 

  11. Gimarc BM, Ott JJ (1986) J Am Chem Soc 108:4298

    Google Scholar 

  12. Gimarc BM, Ott JJ (1986) J Am Chem Soc 108:4303

    Google Scholar 

  13. Bonchev D, Kier L (1992) J Math Chem 9:75

    Google Scholar 

  14. Galvez J, Garcia R, Salabert MT, Soler R (1994) J Chem Inf Comput Sci 34:520

    Google Scholar 

  15. Gasteiger J, Marsili M (1980) Tetrahedron 36:3219

    Google Scholar 

  16. Marsili M, Gasteiger J (1980) Croat Chem Acta 53:601

    Google Scholar 

  17. Moriter WJ, Van Genechten K, Gasteiger J (1985) J Am Chem Soc 107:829

    Google Scholar 

  18. Sanderson RT (1983) J Am Chem Soc 105:2259

    Google Scholar 

  19. Abraham RJ, Griffiths L, Loftus P (1982) J Comput Chem 3: 407

    Google Scholar 

  20. Abraham RJ, Smith PE (1987) J Comput Chem 9:288

    Google Scholar 

  21. Mullay J (1985) J Am Chem Soc 108:1770

    Google Scholar 

  22. Mullay J (1988) J Comput Chem 9:764

    Google Scholar 

  23. Mullay J (1991) J Comput Chem 12:369

    Google Scholar 

  24. No KT, Grant JA, Scherega HA (1990) J Phys Chem 94:4732

    Google Scholar 

  25. No KT, Grant JA, Jhon MS, Scherega HA (1990) J Phys Chem 94:4740

    Google Scholar 

  26. Rappé AK, Goddard III WA (1991) J Phys Chem 95:3358

    Google Scholar 

  27. Oliferenko AA, Palyulin VA, Pisarev SA, Neiman AV, Zefirov NS (2001) J Phys Org Chem 14:355

    Google Scholar 

  28. De Proft F, Van Alsenoy C, Peeters A, Langenaeker W, Geerlings P (2002) J Comput Chem 23:1198

    Google Scholar 

  29. Bultinck P, Langenaeker W, Lahorte P, De Proft F, Van Alsenoy C, Tollenaere JP (2002) J Phys Chem A 106:7895

    Google Scholar 

  30. Bultinck P, Langenaeker W, Carbo-Dorca R, Tollenaere JP (2003) J Chem Inf Comput Sci 43:422

    Google Scholar 

  31. Mulliken RS (1935) J Chem Phys 3:564

    Google Scholar 

  32. Mulliken RS (1955) J Chem Phys 23:1833

    Google Scholar 

  33. Mulliken RS (1962) J Chem Phys 36:3428

    Google Scholar 

  34. Löwdin P-O (1950) J Chem Phys 18:365

    Google Scholar 

  35. Thompson JD, Winget P, Truhlar DG (2001) Phys Chem Comm 4:72. DOI: 10.1039/b105076c

    Google Scholar 

  36. Cusachs LC, Politzer P (1968) Chem Phys Lett 1:529

  37. Stout EW, Politzer P (1968) Theor Chim Acta 12:379

    Google Scholar 

  38. Politzer P, Harris RR (1970) J Am Chem Soc 92:6451

    Google Scholar 

  39. Politzer P (1971) Theor Chim Acta 23:203

    Google Scholar 

  40. Politzer P, Mulliken RS (1971) J Chem Phys 55:5135

    Google Scholar 

  41. Politzer P, Reggio PH (1972) J Am Chem Soc 94:8308

    Google Scholar 

  42. Politzer P, Politzer A (1973) J Am Chem Soc 95:5450

    Google Scholar 

  43. Rousseau B, Peeters A, Van Alsenoy C (2001) THEOCHEM 538: 235

  44. Golebiewski A, Rzescowska E (1974) Acta Phys Pol 45:563

    Google Scholar 

  45. Baker J (1985) Theor Chim Acta 68:221

    Google Scholar 

  46. Kar T, Sannigrahi AB, Mukherjee DC (1987) THEOCHEM 153:93

  47. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83: 735

    Google Scholar 

  48. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

  49. Bader RFW, Larouche A, Gatti C, Carroll MT, MacDougal PJ, Wiberg KB (1987) J Chem Phys 87:1142

    Google Scholar 

  50. Coulson CA, Redei LB, Stocker D (1962) Proc R Soc London Ser A 270:357

  51. Popelier PLA (2001) Theor Chem Acc 105:393

    Google Scholar 

  52. Schwartz ME, Coulson CA, Allen LC (1970) J Am Chem Soc 92: 447

    Google Scholar 

  53. Hirshfeld FL (1977) Theor Chim Acta 44:129

    Google Scholar 

  54. Smit PH, Derissen JL, Van Duijneveldt (1979) Mol Phys 37: 521

  55. Kollman PA (1977) J Am Chem Soc 99:4875

    Google Scholar 

  56. Momany FA (1978) J Phys Chem 86:592

    Google Scholar 

  57. Cox SR, Williams DE (1981) J Comput Chem 2:304

    Google Scholar 

  58. Singh UC, Kollman PA (1984) J Comput Chem 5:129

    Google Scholar 

  59. Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta SJ, Weiner P (1984) J Am Chem Soc 106:765

    Google Scholar 

  60. Weiner SJ, Kollman PA, Nguyen DT, Case DA (1986) J Comput Chem 7:230

    Google Scholar 

  61. Chirlian LE, Francl MM (1987) J Comput Chem 8:894

    Google Scholar 

  62. Francl MM, Carey C, Chirlian LE, Gange DM (1996) J Comput Chem 17:367

    Google Scholar 

  63. Francl MM, Chirlian LE (2000) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 14. Wiley, New York, p 1

  64. Wiberg KB, Rablen PR (1993) J Comput Chem 14:1504

    Google Scholar 

  65. Breneman CM, Wiberg KB (1990) J Comput Chem 11:361

    Google Scholar 

  66. Besler BH, Merz KM, Kollman PA (1990) J Comput Chem 11:431

    Google Scholar 

  67. Merz KM (1992) J Comput Chem 13:749

    Google Scholar 

  68. Westbrook JD, Levy RM, Krogh-Jesperson K (1992) J Comput Chem 13:979

    Google Scholar 

  69. Montagani R, Tomasi J (1993) THEOCHEM 279:131

  70. Beck B, Clark T, Glen RC (1997) J Comput Chem 18:744

    Google Scholar 

  71. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) J Phys Chem 97:10629

    Google Scholar 

  72. Sigfridsson E, Ryde U (1998) J Comput Chem 19:377

    Google Scholar 

  73. Storer JW, Giesen DJ, Cramer CJ, Truhlar DG (1995) J Comput-Aid Mol Des 9:87

    Google Scholar 

  74. Li J, Zhu T, Cramer CJ, Truhlar DG (1998) J Phys Chem A 102:1820

    Google Scholar 

  75. Li J, Williams B, Cramer CJ, Truhlar DG (1999) J Chem Phys 110:724

    Google Scholar 

  76. Winget P, Thompson DJ, Xidos JD, Cramer CJ, Truhlar DG (2002) J Phys Chem A 106:10707

    Google Scholar 

  77. Thompson DJ, Cramer CJ, Truhlar DG (2003) J Comput Chem 24: 1291

    Google Scholar 

  78. Brom JM, Schmitz BJ, Thompson JD, Cramer CJ, Truhlar DG (2003) J Phys Chem A 107:6483

    Google Scholar 

  79. Kalinowski JA, Lesyng B, Thompson JD, Cramer CJ, Truhlar DG (2004) J Phys Chem A 108:2545

    Google Scholar 

  80. Sanderson RT (1976) Chemical bonds and chemical energy. Academic, New York

  81. Politzer P, Weinstein H (1979) J Chem Phys 71:4218

    Google Scholar 

  82. Sorescu DC, Rice BM, Thompson DL (1997) J Phys Chem B 101: 798

    Google Scholar 

  83. Sorescu DC, Rice BM, Thompson DL (1998) J Phys Chem B 102: 948

    Google Scholar 

  84. Sorescu DC, Rice BM, Thompson DL (1998) J Phys Chem B 102: 6692

    Google Scholar 

  85. Sorescu DC, Rice BM, Thompson DL (1999) J Phys Chem A 103: 989

    Google Scholar 

  86. Sorescu DC, Boatz JA, Thompson DL (2001) J Phys Chem A 105: 5010

    Google Scholar 

  87. Smith GD, Bharadwaj RK, Bedrov D, Ayyagari (1999) J Phys Chem B 103:705

  88. Lynch BJ, Zhao Y, Truhlar DG (2003) J Phys Chem A 107:1384

    Google Scholar 

  89. Easton RE, Giesen DJ, Welch A, Cramer CJ, Truhlar DG (1996) Theor Chim Acta 93:281

    Google Scholar 

  90. Li J, Cramer CJ, Truhlar DG (1998) Theor Chim Acta 99:192

    Google Scholar 

  91. Thompson JD, Winget P, Truhlar DG (2001) Phys Chem Comm. DOI: 10.1039/b105076c

  92. Adamo C, Barone V (1998) J Chem Phys 108:664

    Google Scholar 

  93. Mayer I (1983) Chem Phys Lett 97:270

    Google Scholar 

  94. Mayer I (1985) Chem Phys Lett 117:396

    Google Scholar 

  95. Mayer I (1986) Int J Quantum Chem 29:73

    Google Scholar 

  96. Fast PL, Sanchez ML, Truhlar DG (1999) Chem Phys Lett 306: 407

    Google Scholar 

  97. Curtiss LA, Redfern PC, Raghavachari K, Rassolov V, Pople JA (1999) J Chem Phys 110:4703

    Google Scholar 

  98. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Google Scholar 

  99. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265

    Google Scholar 

  100. Woon DE, Dunning Jr. TH (1993) J Chem Phys 98:1358

  101. Stolevik R, Rademacher P (1969) Acta Chem Scand 23:672

    Google Scholar 

  102. Krebs B, Mandt J (1979) Acta Crystallogr B35:402

  103. Sumpter BG, Thompson DL (1988) J Chem Phys 88:6889

    Google Scholar 

  104. Politzer P, Sukumar N, Jayasuriya K, Ranganathan S (1988) J Am Chem Soc 110:3425

    Google Scholar 

  105. Habibollahzadeh D, Murray JS, Redfern PC, Politzer P (1991) J Phys Chem 95:7703

    Google Scholar 

  106. Kohno Y, Maekawa K, Tsuchioka T, Hashizume T, Imamura A (1993) Chem Phys Lett 214:603

    Google Scholar 

  107. Roszak SJ (1994) Mol Struct 304:269

    Google Scholar 

  108. Khaikin LS, Grikina OE, Vilkov LV, Palafox AM, Boggs JE (1993) J Struct Chem 34:2

    Google Scholar 

  109. Khaikin LS, Grikina OE, Vilkov LV, Boggs JE (1993) J Struct Chem 34:9

    Google Scholar 

  110. Harris JN, Lammerstsma K (1997) J Phys Chem A 101:1370

    Google Scholar 

  111. Johnson MA, Truong TN (1999) J Phys Chem A 103:8840

    Google Scholar 

  112. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr. JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalamani G, Rega N, Petersson GA, Nagatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C and Pople JA (2003) Gaussian 03, revision A.1. Gaussian, Pittsburgh

  113. Xidos JD, Li J, Thompson JD, Hawkins GD, Winget PD, Zhu T, Rinaldi D, Liotard DA, Cramer CJ, Truhlar DG (2003) MN-GSM, version 3.1. University of Minnesota, Minneapolis

  114. NAG Fortran 90 Library, 4th edn. (2000) The Numerical Algorithms Group, Inc., Oxford

  115. Tyler JK (1963) J Mol Spectrosc 11:39

    Google Scholar 

  116. Hunter EC, Partington JR (1933) J Chem Soc 309

  117. George MV, Wright G (1958) J Am Chem Soc 80:1200

    Google Scholar 

  118. Choi CS, Prince E (1972) Acta Crystallogr B28:2857

  119. Shishkov IF, Vilkov LV, Kolontis M, Rozsondai B (1991) Struct Chem 2:57

  120. Karpwicz RJ, Brill TB (1984) J Phys Chem 88:348

    Google Scholar 

  121. Filhol A, Clement C, Forel M-T, Paviot J, Rey-Lafon M, Richoux G, Trinquecoste C, Cherville J (1971) J Phys Chem 75:2056

    Google Scholar 

  122. Nielson AT, Chafin AP, Christian SL, Moore DW, Nadler MP, Nissan RA, Vanderah DJ (1998) Tetrahedron 54:11793

    Google Scholar 

  123. Lide DR (ed) (2000) CRC handbook of chemistry and physics, 80th edn. CRC Press, Boca Raton

  124. Stark B (1974) In: Hellwege K-H, Hellwege AM (eds) Molecular constants from microwave spectroscopy, Landolt-Börnstein, new series, group II, vol 6. Springer, Berlin Heidelberg, New York, p 261

  125. Nelson RD, Lide DR, Maryott AA (1967) Natl stand ref dat ser, United States National Bureau of Standards NSRDS-NBS 10. Washington

  126. Velnio B, Cané E, Trombetti A, Corbelli G (1992) J Mol Spectrosc 155:1

    Google Scholar 

  127. Velnio B, Cané E, Gagliardi L, Trombetti A, Caminati W (1993) J Mol Spectrosc 161:136

    Google Scholar 

  128. Krugh WD, Gold LP (1974) J Mol Spectrosc 49:423

    Google Scholar 

  129. McClellan AL (1963) Tables of experimental dipole moments. WH Freeman, San Francisco

  130. Stark B (1967) In: Hellwege K-H, Hellwege AM (eds) Molecular constants from microwave spectroscopy, Landolt-Börnstein, new series, group II, vol 4. Springer, Berlin Heidelberg, New York, p 136

  131. Stark B (1982) In: Hellwege K-H, Hellwege AM (eds) Molecular constants from microwave spectroscopy, Landolt-Börnstein, new series, group II, vol 14a. Springer, Berlin Heidelberg New York, p 261

  132. Caminati W, Velnio B, Danieli R (1993) J Mol Spectrosc 161:208

    Google Scholar 

  133. Becke AD (1997) J Chem Phys 107:8554

    Google Scholar 

  134. Becke AD (1988) Phys Rev A 38:3098

    Google Scholar 

  135. Lee C, Yang W, Parr RG (1987) Phys Rev B 37:785

    Google Scholar 

  136. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623

    Google Scholar 

  137. Becke AD (1993) J Chem Phys 98:5648

    Google Scholar 

  138. Hamprecht FA, Cohen AJ, Tozer DJ, Handy NC (1998) J Chem Phys 109:6264

    Google Scholar 

  139. Wilson PJ, Bradley TJ, Tozer DJ (2001) J Chem Phys 115: 9233

    Google Scholar 

  140. Schmider HL, Becke AD (1998) J Chem Phys 108:9264

    Google Scholar 

  141. Thompson JD, Cramer CJ, Truhlar DG (2004) J Phys Chem A 108:6532

    Google Scholar 

  142. Hoijtink GJ, Boer ED, Meij PHvD, Weijland WP (1956) Recl Trav Chim Pays-Bas 75:487

  143. Peradejori F (1963) Cah Phys 17:393

  144. Tucker SC, Truhlar DG (1989) Chem Phys Lett 157:164

    Google Scholar 

  145. Still WC, Tempczyk A, Hawley RC, Hendrickson T (1990) J Am Chem Soc 112:6127

    Google Scholar 

  146. Winget P, Dolney DM, Giesen DJ, Cramer CJ, Truhlar DG (1999) Minnesota solvent descriptor database. http://comp.chem.umn.edu/solvation/mnsddb.pdf

  147. Thompson JD, Cramer CJ, Truhlar DG (2003) J Chem Phys 119:1661

    Google Scholar 

  148. Walsh ME, Jenkins TF, Thorne PG (1995) J Energ Mater 13: 357

    Google Scholar 

  149. Syracuse research corporation (1994) Physical/chemical property database (PHYSPROP), SRC Environmental Science Center, Syracuse

  150. Leo AJ (1994) Masterfile from MedChem Software, BioByte Corp., Claremont

  151. Ben-Naim A (1987) Solvation thermodynamics. Plenum, New York

  152. Tapia O (1980) In: Daudel R, Pullman A, Salem L, Viellard A (eds) Quantum theory of chemical reactions. Reidel, Dordrecht, p 25

  153. Zhu T, Li J, Hawkins GD, Cramer CJ, Truhlar DG (1998) J Chem Phys 109:9117

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Cramer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, C., Cramer, C. & Truhlar, D. Accurate partial atomic charges for high-energy molecules using class IV charge models with the MIDI! basis set. Theor Chem Acc 113, 133–151 (2005). https://doi.org/10.1007/s00214-004-0624-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-004-0624-x

Keywords

Navigation