Skip to main content

Advertisement

Log in

Endogenous opioid systems and alcohol addiction

  • REVIEW
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

 Alcohol exerts numerous pharmacological effects through its interaction with various neurotransmitters and neuromodulators. Among the latter, the endogenous opioids play a key role in the rewarding (addictive) properties of ethanol. Three types of opioid receptors (μ, δ and κ) represent the respective targets of the major opioid peptides (β-endorphin, enkephalins and dynorphins, respectively). The rewarding (reinforcing) properties of μ- and δ-receptor ligands are brought about by activation of the mesolimbic dopamine system which ascends from the ventral tegmentum of the midbrain (VTA) to rostral structures; of these, the nucleus accumbens (NAC) is of particular importance in drug addiction. In contrast, dysphoria results from activation of κ-receptors. The neurochemical manifestations of these opposing effects are, respectively, increases and decreases in dopamine release in the NAC. Several lines of evidence indicate that alcohol interferes with endogenous opioid mechanisms which are closely linked with dopamine transmission in the mesolimbic pathway. The view that condensation products of dopamine and alcohol-derived aldehyde (tetrahydroisoquinolines) play a role remains controversial. There is, however, much information on the direct (acute and chronic) effects of alcohol on the binding properties of opioid receptors, as well as modulation of opioid peptide synthesis and secretion (e.g. a suggested increase in β-endorphin release). In view of the reinforcing properties of alcohol, it is relevant to consider behavioural studies involving alcohol self-administration in rodents and primates. Low doses of morphine have been found to increase, and higher doses of the opiate to decrease, alcohol consumption. Conversely, opioid antagonists such as naloxone and naltrexone (which bind to non-selectively opioid receptors) have been shown to decrease alcohol consumption under various experimental conditions. Similar results have been reported when selective μ- or δ-receptor antagonists are administered. Results obtained in genetic models of high preference for alcohol also support the view that alcohol intake depends on the activity of the endogenous opioid reward system and that alcohol consumption may serve to compensate for inherent deficits in this system. One hypothetical model proposes that reward results from activation of μ-opioid receptors in the VTA and/or δ-receptors in the NAC; both these nuclei are targets of endogenous β-endorphin. It is suggested that alcohol interferes with this reward pathway either directly or indirectly. The available experimental data accord well with those obtained from clinical studies in which opioid antagonists have been used to prevent relapse in alcoholics. Conceptual considerations concerning communalities between various forms of addictions are also discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 12 June 1996 / Final version: 30 August 1996

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herz, A. Endogenous opioid systems and alcohol addiction. Psychopharmacology 129, 99–111 (1997). https://doi.org/10.1007/s002130050169

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002130050169

Navigation