Skip to main content
Log in

Insufficient autophagy enables the nuclear factor erythroid 2-related factor 2 (NRF2) to promote ferroptosis in morphine-treated SH-SY5Y cells

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

While morphine has important therapeutic value it is also one of the most widely abused drugs in the world. As a newly discovered style of cell death, ferroptosis is involved in the occurrence and development of many diseases, however, the current understanding of the relationship between ferroptosis and morphine is still limited.

Objective

To clarify the role of opioid receptors in morphine-induced ferroptosis and to investigate the role of NRF2 in morphine-induced ferroptosis.

Methods

We first used different doses of morphine (0, 0.5, 1, and 1.5 mM) to investigate morphine-induced ferroptosis in SH-SY5Y cells, and we choose 1.5 mM morphine for subsequent experiments. We next inhibited opioid receptors and NRF2 separately and examined their influence on morphine-induced ferroptosis. Finally, we tested morphine-induced insufficient autophagy.

Results

Morphine triggered ferroptosis in a dose-dependent manner, which could be significantly rescued by the ferroptosis-specific inhibitor DFO. Moreover, GPX4 rather than xCT antiporter might be involved in morphine-induced ferroptosis. We also found naloxone could inhibit morphine-induced ferroptosis. Interestingly, our results demonstrated that NRF2 could promote rather than defend morphine-induced ferroptosis; this may be due to the increased p62-related insufficient autophagy.

Conclusion

Morphine-induced ferroptosis is regulated by the opioid receptor and GPX4 rather than the xCT antiporter. NRF2-mediated ferroptosis in morphine-exposed cells may stem from increased p62-related insufficient autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  • Bai T, Lei P, Zhou H et al (2019) Sigma-1 receptor protects against ferroptosis in hepatocellular carcinoma cells. J Cell Mol Med 23(11):7349–7359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai T, Wang S, Zhao Y, Zhu R, Wang W, Sun Y (2017) Haloperidol, a sigma receptor 1 antagonist, promotes ferroptosis in hepatocellular carcinoma cells. Biochem Biophys Res Commun 491(4):919–925

    Article  CAS  PubMed  Google Scholar 

  • Barayuga SM, Pang X, Andres MA, Panee J, Bellinger FP (2013) Methamphetamine decreases levels of glutathione peroxidases 1 and 4 in SH-SY5Y neuronal cells: protective effects of selenium. Neurotoxicology. 37:240–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Li W, Ren J et al (2014) Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res 24(1):105–121

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Xu S, Zhao C, Liu B (2019b) Role of TLR4/NADPH oxidase 4 pathway in promoting cell death through autophagy and ferroptosis during heart failure. Biochem Biophys Res Commun 516(1):37–43

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Zhang B, Liu T et al (2019a) Liproxstatin-1 attenuates morphine tolerance through inhibiting spinal ferroptosis-like cell death. ACS Chem Nerosci 10(12):4824–4833

    Article  Google Scholar 

  • Del Re DP, Amgalan D, Linkermann A, Liu Q, Kitsis RN (2019) Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev 99(4):1765–1817

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixon SJ, Lemberg KM, Lamprecht MR et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 149(5):1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodson M, Castro-Portuguez R, Zhang DD (2019) NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol 23:101107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolma S, Lessnick SL, Hahn WC, Stockwell BR (2003) Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3(3):285–296

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Qiang Z, Chai D et al (2020) Nrf2 inhibits ferroptosis and protects against acute lung injury due to intestinal ischemia reperfusion via regulating SLC7A11 and HO-1. Aging (Albany NY) 12(13):12943–12959

    Article  CAS  PubMed  Google Scholar 

  • Fan BY, Pang YL, Li WX et al (2021a) Liproxstatin-1 is an effective inhibitor of oligodendrocyte ferroptosis induced by inhibition of glutathione peroxidase 4. Neural Regen Res 16(3):561–566

    Article  CAS  PubMed  Google Scholar 

  • Fan RF, Tang KK, Wang ZY, Wang L (2021b) Persistent activation of Nrf2 promotes a vicious cycle of oxidative stress and autophagy inhibition in cadmium-induced kidney injury. Toxicology. 464:152999

    Article  CAS  PubMed  Google Scholar 

  • Fang X, Wang H, Han D et al (2019) Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci U S A 116(7):2672–2680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira-Chamorro P, Redondo A, Riego G, Leánez S, Pol O (2018) Sulforaphane inhibited the nociceptive responses, anxiety- and depressive-like behaviors associated with neuropathic pain and improved the anti-allodynic effects of morphine in mice. Front Pharmacol 9:1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedmann Angeli JP, Schneider M, Proneth B et al (2014) Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 16(12):1180–1191

    Article  CAS  PubMed  Google Scholar 

  • Friesen C, Roscher M, Hormann I et al (2013) Cell death sensitization of leukemia cells by opioid receptor activation. Oncotarget 4(5):677–690

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu J, Xu M, Xu L et al (2021) Sulforaphane alleviates hyperalgesia and enhances analgesic potency of morphine in rats with cancer-induced bone pain. Eur J Pharmacol 909:174412

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L, Vitale I, Aaronson SA et al (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25(3):486–541

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaschler MM, Andia AA, Liu H et al (2018) FINO(2) initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat Chem Biol 14(5):507–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Li D, Cen XF et al (2022) Diosmetin protects against cardiac hypertrophy via p62/Keap1/Nrf2 signaling pathway. Oxid Med Cell Longev 2022:8367997

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassanzadeh K, Habibi-asl B, Farajnia S, Roshangar L (2011) Minocycline prevents morphine-induced apoptosis in rat cerebral cortex and lumbar spinal cord: a possible mechanism for attenuating morphine tolerance. Neurotox Res 19(4):649–659

    Article  CAS  PubMed  Google Scholar 

  • Iglesias M, Segura MF, Comella JX, Olmos G (2003) Mu-opioid receptor activation prevents apoptosis following serum withdrawal in differentiated SH-SY5Y cells and cortical neurons via phosphatidylinositol 3-kinase. Neuropharmacology. 44(4):482–492

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Kon N, Li T et al (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 520(7545):57–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang R, Kroemer G, Tang D (2019) The tumor suppressor protein p53 and the ferroptosis network. Free Radic Biol Med 133:162–168

    Article  CAS  PubMed  Google Scholar 

  • Khakpai F, Nedaei F, Shahini F, Zarrindast MR (2021) Synergistic analgesic effect of morphine and tramadol in non-sensitized and morphine-sensitized mice: an isobolographic study. Acta Neurobiol Exp (Wars) 81(4):350–361

    PubMed  Google Scholar 

  • Khot M, Sood A, Tryphena KP et al (2023) Dimethyl fumarate ameliorates parkinsonian pathology by modulating autophagy and apoptosis via Nrf2-TIGAR-LAMP2/Cathepsin D axis. Brain Res 1815:148462

    Article  CAS  PubMed  Google Scholar 

  • Khurdayan VK, Buch S, El-Hage N et al (2004) Preferential vulnerability of astroglia and glial precursors to combined opioid and HIV-1 Tat exposure in vitro. Eur J Neurosci 19(12):3171–3182

    Article  PubMed  PubMed Central  Google Scholar 

  • Komatsu M, Waguri S, Koike M et al (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell. 131(6):1149–1163

    Article  CAS  PubMed  Google Scholar 

  • Koppula P, Zhang Y, Zhuang L, Gan B (2018) Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer communications (London, England) 38(1):12

    PubMed  Google Scholar 

  • Kruiswijk F, Labuschagne CF, Vousden KH (2015) p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Biol 16(7):393–405

    Article  CAS  PubMed  Google Scholar 

  • Lamark T, Kirkin V, Dikic I, Johansen T (2009) NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle 8(13):1986–1990

    Article  CAS  PubMed  Google Scholar 

  • Listos J, Łupina M, Talarek S, Mazur A, Orzelska-Górka J, Kotlińska J (2019) The Mechanisms Involved in Morphine Addiction: An Overview. Int J Mol Sci 20(17):4302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Wang C, Li J et al (2021) Autophagy blockage promotes the pyroptosis of ox-LDL-treated macrophages by modulating the p62/Nrf2/ARE axis. J Physiol Biochem 77(3):419–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu LT, Song YQ, Chen XS et al (2020) Morphine-induced RACK1-dependent autophagy in immortalized neuronal cell lines. Br J Pharmacol 177(7):1609–1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Q (2013) Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53:401–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda T, Zhai P, Sciarretta S et al (2016) NF2 activates hippo signaling and promotes ischemia/reperfusion injury in the heart. Circ Res 119(5):596–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mozafari N, Hassanshahi J, Ostadebrahimi H et al (2022) Neuroprotective effect of Achillea millefolium aqueous extract against oxidative stress and apoptosis induced by chronic morphine in rat hippocampal CA1 neurons. Acta Neurobiol Exp (Wars) 82(2):179–186

    PubMed  Google Scholar 

  • Musacchio JM (1990) The psychotomimetic effects of opiates and the sigma receptor. Neuropsychopharmacology. 3(3):191–200

    CAS  PubMed  Google Scholar 

  • Óm SC, Slyne AD (2021) Opioids, plasticity and phrenic motor performance: investigating the off-target effects of acute morphine administration. J Physiol 599(19):4411–4412

    Article  Google Scholar 

  • Pasternak GW (1993) Pharmacological mechanisms of opioid analgesics. Clin Neuropharmacol 16(1):1–18

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Pan J, Wang H, Mo J, Lan L, Peng Y (2022b) Morphine-induced microglial immunosuppression via activation of insufficient mitophagy regulated by NLRX1. J Neuroinflammation 19(1):87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng Q, Liu H, Luo Z, Zhao H, Wang X, Guan X (2022a) Effect of autophagy on ferroptosis in foam cells via Nrf2. Mol Cell Biochem 477(5):1597–1606

    Article  CAS  PubMed  Google Scholar 

  • Pergolizzi JV Jr, Raffa RB, Rosenblatt MH (2020) Opioid withdrawal symptoms, a consequence of chronic opioid use and opioid use disorder: current understanding and approaches to management. J Clin Pharm Ther 45(5):892–903

    Article  PubMed  Google Scholar 

  • Qin Q, Qu C, Niu T et al (2016) Nrf2-Mediated cardiac maladaptive remodeling and dysfunction in a setting of autophagy insufficiency. Hypertension (Dallas, Tex: 1979) 67(1):107–117

    Article  CAS  PubMed  Google Scholar 

  • Razavi Y, Alamdary SZ, Katebi SN, Khodagholi F, Haghparast A (2014) Morphine-induced apoptosis in the ventral tegmental area and hippocampus after the development but not extinction of reward-related behaviors in rats. Cell Mol Neurobiol 34(2):235–245

    Article  CAS  PubMed  Google Scholar 

  • Redondo A, Chamorro PAF, Riego G, Leánez S, Pol O (2017) Treatment with sulforaphane produces antinociception and improves morphine effects during inflammatory pain in mice. J Pharmacol Exp Ther 363(3):293–302

    Article  CAS  PubMed  Google Scholar 

  • Reymond S, Vujić T, Schvartz D, Sanchez JC (2022) Morphine-induced modulation of Nrf2-antioxidant response element signaling pathway in primary human brain microvascular endothelial cells. Sci Rep 12(1):4588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rusten TE, Stenmark H (2010) p62, an autophagy hero or culprit? Nat Cell Biol 12(3):207–209

    Article  CAS  PubMed  Google Scholar 

  • Shibani F, Sahamsizadeh A, Fatemi I et al (2019) Effect of oleuropein on morphine-induced hippocampus neurotoxicity and memory impairments in rats. Naunyn Schmiedebergs Arch Pharmacol 392(11):1383–1391

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Ou Z, Chen R et al (2016) Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 63(1):173–184

    Article  CAS  PubMed  Google Scholar 

  • Tegeder I, Geisslinger G (2004) Opioids as modulators of cell death and survival--unraveling mechanisms and revealing new indications. Pharmacol Rev. 56(3):351-369

  • Tramullas M, Martínez-Cué C, Hurlé MA (2008) Chronic administration of heroin to mice produces up-regulation of brain apoptosis-related proteins and impairs spatial learning and memory. Neuropharmacology. 54(4):640–652

    Article  CAS  PubMed  Google Scholar 

  • Trescot AM, Datta S, Lee M, Hansen H (2008) Opioid pharmacology. Pain Physician 11(2 Suppl):S133–S153

    Article  PubMed  Google Scholar 

  • Tsujikawa H, Shoda T, Mizota T, Fukuda K (2009) Morphine induces DNA damage and P53 activation in CD3+ T cells. Biochim Biophys Acta 1790(8):793–799

    Article  CAS  PubMed  Google Scholar 

  • Ursini F, Maiorino M (2020) Lipid peroxidation and ferroptosis: the role of GSH and GPx4. Free Radic Biol Med 152:175–185

    Article  CAS  PubMed  Google Scholar 

  • Xiao L, Dai Z, Tang W, Liu C, Tang B (2021) Astragaloside IV alleviates cerebral ischemia-reperfusion injury through NLRP3 inflammasome-mediated pyroptosis inhibition via activating Nrf2. Oxid Med Cell Longev 2021:9925561

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang WS, SriRamaratnam R, Welsch ME et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell. 156(1-2):317–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang WS, Stockwell BR (2008) Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol 15(3):234–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang WS, Stockwell BR (2016) Ferroptosis: death by lipid peroxidation. Trends Cell Biol 26(3):165–176

    Article  CAS  PubMed  Google Scholar 

  • Yin D, Woodruff M, Zhang Y et al (2006) Morphine promotes Jurkat cell apoptosis through pro-apoptotic FADD/P53 and anti-apoptotic PI3K/Akt/NF-kappaB pathways. J Neuroimmunol 174(1-2):101–107

    Article  CAS  PubMed  Google Scholar 

  • Yun J, Lee Y, Yun K, Oh S (2015) Bergenin decreases the morphine-induced physical dependence via antioxidative activity in mice. Arch Pharm Res 38(6):1248–1254

    Article  CAS  PubMed  Google Scholar 

  • Zang H, Wu W, Qi L et al (2020) Autophagy inhibition enables Nrf2 to exaggerate the progression of diabetic cardiomyopathy in mice. Diabetes. 69(12):2720–2734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Lan J, Zhao D et al (2023) Netrin-1 upregulates GPX4 and prevents ferroptosis after traumatic brain injury via the UNC5B/Nrf2 signaling pathway. CNS Neurosci Ther 29(1):216–227

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Xu DY, Sha WG, Shen L, Lu GY, Yin X (2015) Long non-coding MIAT mediates high glucose-induced renal tubular epithelial injury. Biochem Biophys Res Commun 468(4):726–732

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to EditSprings (https://www.editsprings.cn) for the expert linguistic services provided.

Funding

This study was funded by the National Natural Science Foundation of China (82171880).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuguang Wei.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Yan, X., Chen, G. et al. Insufficient autophagy enables the nuclear factor erythroid 2-related factor 2 (NRF2) to promote ferroptosis in morphine-treated SH-SY5Y cells. Psychopharmacology 241, 291–304 (2024). https://doi.org/10.1007/s00213-023-06485-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-023-06485-6

Keywords

Navigation