Abstract
Rationale
The endocannabinoid (eCB) system critically controls anxiety and fear-related behaviours. Anandamide (AEA), a prominent eCB ligand, is a hydrophobic lipid that requires chaperone proteins such as Fatty Acid Binding Proteins (FABPs) for intracellular transport. Intracellular AEA transport is necessary for degradation, so blocking FABP activity increases AEA neurotransmission.
Objective
To investigate the effects of a novel FABP5 inhibitor (SBFI-103) in the basolateral amygdala (BLA) on anxiety and fear memory.
Methods
We infused SBFI-103 (0.5 μg—5 μg) to the BLA of adult male Sprague Dawley rats and ran various anxiety and fear memory behavioural assays, neurophysiological recordings, and localized molecular signaling analyses. We also co-infused SBFI-103 with the AEA inhibitor, LEI-401 (3 μg and 10 μg) to investigate the potential role of AEA in these phenomena.
Results
Acute intra-BLA administration of SBFI-103 produced strong anxiolytic effects across multiple behavioural tests. Furthermore, animals exhibited acute and long-term accelerated associative fear memory extinction following intra-BLA FABP5 inhibition. In addition, BLA FABP5 inhibition induced strong modulatory effects on putative PFC pyramidal neurons along with significantly increased gamma oscillation power. Finally, we observed local BLA changes in the phosphorylation activity of various anxiety- and fear memory-related molecular biomarkers in the PI3K/Akt and MAPK/Erk signaling pathways. At all three levels of analyses, we found the functional effects of SBFI-103 depend on availability of the AEA ligand.
Conclusions
These findings demonstrate a novel intra-BLA FABP5 signaling mechanism regulating anxiety and fear memory behaviours, neuronal activity states, local anxiety-related molecular pathways, and functional AEA modulation.
Similar content being viewed by others
Data availability
All data generated or analyzed during this study are available from the corresponding author, SRL, upon reasonable request.
References
Ackermann TF, Hörtnagl H, Wolfer DP et al (2008) Phosphatidylinositide Dependent Kinase Deficiency Increases Anxiety and Decreases GABA and Serotonin Abundance in the Amygdala. Cell Physiol Biochem 22:735–744. https://doi.org/10.1159/000185557
Bassir Nia A, Bender R, Harpaz-Rotem I (2019) Endocannabinoid System Alterations in Posttraumatic Stress Disorder: A Review of Developmental and Accumulative Effects of Trauma. Chronic Stress 3:247054701986409. https://doi.org/10.1177/2470547019864096
Bercum FM, Navarro Gomez MJ, Saddoris MP (2021) Elevated fear responses to threatening cues in rats with early life stress is associated with greater excitability and loss of gamma oscillations in ventral-medial prefrontal cortex. Neurobiol Learn Mem 185:107541. https://doi.org/10.1016/j.nlm.2021.107541
Bouaboula M, Poinot-Chazel C, Bourrié B et al (1995) Activation of mitogen-activated protein kinases by stimulation of the central cannabinoid receptor CB1. Biochemical J 312:637–641. https://doi.org/10.1042/bj3120637
Budni J, Lobato KR, Binfaré RW et al (2012) Involvement of PI3K, GSK-3β and PPARγ in the antidepressant-like effect of folic acid in the forced swimming test in mice. J Psychopharmacol 26:714–723. https://doi.org/10.1177/0269881111424456
Cascade E, Kalali AH, Kennedy SH (2009) Real-World Data on SSRI Antidepressant Side Effects. Psychiatry 6:16–18
Chhatwal JP, Davis M, Maguschak KA, Ressler KJ (2005) Enhancing Cannabinoid Neurotransmission Augments the Extinction of Conditioned Fear. Neuropsychopharmacology 30:516–524. https://doi.org/10.1038/sj.npp.1300655
Chicca A, Nicolussi S, Bartholomäus R, Blunder M, Aparisi Rey A, Petrucci V, Reynoso-Moreno I, Viveros-Paredes JM, Dalghi Gens M, Lutz B, Schioth HB, Soeberdt M, Abels C, Charles R, Altmann K, Gertsch J (2017) Chemical probes to potently and selectively inhibit endocannabinoid cellular reuptake. Proceedings of the National Academy of Sciences 114. https://doi.org/10.1073/pnas.1704065114
Chouinard G (2004) Issues in the clinical use of benzodiazepines: Potency, withdrawal, and rebound. J Clin Psychiatry 65:7–12
Courtin J, Karalis N, Gonzalez-Campo C et al (2014) Persistence of amygdala gamma oscillations during extinction learning predicts spontaneous fear recovery. Neurobiol Learn Mem 113:82–89. https://doi.org/10.1016/j.nlm.2013.09.015
Danandeh A, Vozella V, Lim J et al (2018) Effects of fatty acid amide hydrolase inhibitor URB597 in a rat model of trauma-induced long-term anxiety. Psychopharmacology 235:3211–3221. https://doi.org/10.1007/s00213-018-5020-7
Davis M (1992) The Role of the Amygdala in Fear and Anxiety. Annu Rev Neurosci 15:353–375. https://doi.org/10.1146/annurev.ne.15.030192.002033
de Carvalho CR, Lopes MW, Constantino LC et al (2021) The ERK phosphorylation levels in the amygdala predict anxiety symptoms in humans and MEK/ERK inhibition dissociates innate and learned defensive behaviors in rats. Mol Psychiatry 26:7257–7269. https://doi.org/10.1038/s41380-021-01203-0
Desarnaud F, Cadas H, Piomelli D (1995) Anandamide Amidohydrolase Activity in Rat Brain Microsomes. J Biol Chem 270:6030–6035. https://doi.org/10.1074/jbc.270.11.6030
di Marzo V, Fontana A, Cadas H et al (1994) Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 372:686–691. https://doi.org/10.1038/372686a0
Dincheva I, Drysdale AT, Hartley CA et al (2015) FAAH genetic variation enhances fronto-amygdala function in mouse and human. Nat Commun 6:6395. https://doi.org/10.1038/ncomms7395
Draycott B, Loureiro M, Ahmad T et al (2014) Cannabinoid Transmission in the Prefrontal Cortex Bi-Phasically Controls Emotional Memory Formation via Functional Interactions with the Ventral Tegmental Area. J Neurosci 34:13096–13109. https://doi.org/10.1523/JNEUROSCI.1297-14.2014
Duan T, Gu N, Wang Y et al (2017) Fatty acid amide hydrolase inhibitors produce rapid anti-anxiety responses through amygdala long-term depression in male rodents. J Psychiatry Neurosci 42:230–241. https://doi.org/10.1503/jpn.160116
Fluyau D, Revadigar N, Manobianco BE (2018) Challenges of the pharmacological management of benzodiazepine withdrawal, dependence, and discontinuation. Ther Adv Psychopharmacol 8:147–168. https://doi.org/10.1177/2045125317753340
Fogaça MV, Aguiar DC, Moreira FA, Guimarães FS (2012) The endocannabinoid and endovanilloid systems interact in the rat prelimbic medial prefrontal cortex to control anxiety-like behavior. Neuropharmacology 63:202–210. https://doi.org/10.1016/j.neuropharm.2012.03.007
Freund TF, Katona I, Piomelli D (2003) Role of Endogenous Cannabinoids in Synaptic Signaling. Physiol Rev 83:1017–1066. https://doi.org/10.1152/physrev.00004.2003
Fu J, Gaetani S, Oveisi F et al (2003) Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-α. Nature 425:90–93. https://doi.org/10.1038/nature01921
Giang DK, Cravatt BF (1997) Molecular characterization of human and mouse fatty acid amide hydrolases. Proc Natl Acad Sci 94:2238–2242. https://doi.org/10.1073/pnas.94.6.2238
Giménez-Llort L, Santana-Santana M, Bayascas JR (2020) The Impact of the PI3K/Akt Signaling Pathway in Anxiety and Working Memory in Young and Middle-Aged PDK1 K465E Knock-In Mice. Frontiers in Behavioral Neuroscience 14:61. https://doi.org/10.3389/fnbeh.2020.00061
Gomez del Pulgar T, Velasco G, Guzman M (2000) The CB1 cannabinoid receptor is coupled to the activation of protein kinase B/Akt. Biochemical J 347:369–373. https://doi.org/10.1042/bj3470369
Gray JM, Vecchiarelli HA, Morena M et al (2015) Corticotropin-Releasing Hormone Drives Anandamide Hydrolysis in the Amygdala to Promote Anxiety. J Neurosci 35:3879–3892. https://doi.org/10.1523/JNEUROSCI.2737-14.2015
Gunduz-Cinar O, MacPherson KP, Cinar R et al (2013) Convergent translational evidence of a role for anandamide in amygdala-mediated fear extinction, threat processing and stress-reactivity. Mol Psychiatry 18:813–823. https://doi.org/10.1038/mp.2012.72
Haj-Dahmane S, Shen RY, Elmes MW et al (2018) Fatty-acid-binding protein 5 controls retrograde endocannabinoid signaling at central glutamate synapses. Proc Natl Acad Sci U S A 115:3482–3487. https://doi.org/10.1073/pnas.1721339115
Hájos N, Katona I, Naiem SS et al (2000) Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations. Eur J Neurosci 12:3239–3249. https://doi.org/10.1046/j.1460-9568.2000.00217.x
Headley DB, Weinberger NM (2011) Gamma-Band Activation Predicts Both Associative Memory and Cortical Plasticity. J Neurosci 31:12748–12758. https://doi.org/10.1523/JNEUROSCI.2528-11.2011
Herry C, Trifilieff P, Micheau J et al (2006) Extinction of auditory fear conditioning requires MAPK/ERK activation in the basolateral amygdala. Eur J Neurosci 24:261–269. https://doi.org/10.1111/j.1460-9568.2006.04893.x
Herry C, Ciocchi S, Senn V et al (2008) Switching on and off fear by distinct neuronal circuits. Nature 454:600–606. https://doi.org/10.1038/nature07166
Hill MN, Kumar SA, Filipski SB et al (2013) Disruption of fatty acid amide hydrolase activity prevents the effects of chronic stress on anxiety and amygdalar microstructure. Mol Psychiatry 18:1125–1135. https://doi.org/10.1038/mp.2012.90
Janak PH, Tye KM (2015) From circuits to behaviour in the amygdala. Nature 517:284–292
Kaczocha M, Vivieca S, Sun J et al (2012) Fatty Acid-binding Proteins Transport N-Acylethanolamines to Nuclear Receptors and Are Targets of Endocannabinoid Transport Inhibitors. J Biol Chem 287:3415–3424. https://doi.org/10.1074/jbc.M111.304907
Kaczocha M, Glaser ST, Deutsch DG (2009) Identification of intracellular carriers for the endocannabinoid anandamide. Proc Natl Acad Sci 106:6375–6380. https://doi.org/10.1073/pnas.0901515106
Kaczocha M, Rebecchi MJ, Ralph BP, et al (2014) Inhibition of fatty acid binding proteins elevates brain anandamide levels and produces analgesia. PLoS One 9. https://doi.org/10.1371/journal.pone.0094200
Kano M, Ohno-Shosaku T, Hashimotodani Y et al (2009) Endocannabinoid-Mediated Control of Synaptic Transmission. Physiol Rev 89:309–380. https://doi.org/10.1152/physrev.00019.2008
Kathuria S, Gaetani S, Fegley D et al (2003) Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med 9:76–81. https://doi.org/10.1038/nm803
Katona I, Freund TF (2008) Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat Med 14:923–930. https://doi.org/10.1038/nm.f.1869
Kitagishi Y, Kobayashi M, Kikuta K, Matsuda S (2012) Roles of PI3K/AKT/GSK3/mTOR Pathway in Cell Signaling of Mental Illnesses. Depress Res Treat 2012:1–8. https://doi.org/10.1155/2012/752563
Lafenêtre P, Chaouloff F, Marsicano G (2007) The endocannabinoid system in the processing of anxiety and fear and how CB1 receptors may modulate fear extinction. Pharmacol Res 56:367–381
Lafourcade M, Elezgarai I, Mato S et al (2007) Molecular components and functions of the endocannabinoid system in mouse prefrontal cortex. PLoS One 2:e709. https://doi.org/10.1371/journal.pone.0000709
Laviolette SR, Grace AA (2006) Cannabinoids Potentiate Emotional Learning Plasticity in Neurons of the Medial Prefrontal Cortex through Basolateral Amygdala Inputs. J Neurosci 26:6458–6468. https://doi.org/10.1523/JNEUROSCI.0707-06.2006
Laviolette SR, Lipski WJ, Grace AA (2005) A subpopulation of neurons in the medial prefrontal cortex encodes emotional learning with burst and frequency codes through a dopamine D 4 receptor-dependent basolateral amygdala input. J Neurosci 25:6066–6075. https://doi.org/10.1523/JNEUROSCI.1168-05.2005
LeDoux JE (2000) Emotion Circuits in the Brain. Annu Rev Neurosci 23:155–184. https://doi.org/10.1146/annurev.neuro.23.1.155
Lee TT-Y, Hill MN, Lee FS (2016) Developmental regulation of fear learning and anxiety behavior by endocannabinoids. Genes Brain Behav 15:108–124. https://doi.org/10.1111/gbb.12253
Leibrock C, Ackermann TF, Hierlmeier M et al (2013) Akt2 Deficiency is Associated with Anxiety and Depressive Behavior in Mice. Cell Physiol Biochem 32:766–777. https://doi.org/10.1159/000354478
Lisboa SF, Borges AA, Nejo P et al (2015) Cannabinoid CB1 receptors in the dorsal hippocampus and prelimbic medial prefrontal cortex modulate anxiety-like behavior in rats: Additional evidence. Prog Neuropsychopharm Biol Psychiat 59:76–83. https://doi.org/10.1016/j.pnpbp.2015.01.005
Liu R-Z, Mita R, Beaulieu M et al (2010) Fatty acid binding proteins in brain development and disease. Int J Dev Biol 54:1229–1239. https://doi.org/10.1387/ijdb.092976rl
LoVerme J, La Rana G, Russo R et al (2005) The search for the palmitoylethanolamide receptor. Life Sci 77:1685–1698. https://doi.org/10.1016/j.lfs.2005.05.012
Lutz B, Marsicano G, Maldonado R, Hillard CJ (2015) The endocannabinoid system in guarding against fear, anxiety and stress. Nat Rev Neurosci 16:705–718
Lyons D, de Jaeger X, Rosen LG et al (2013) Opiate exposure and withdrawal induces a molecular memory switch in the basolateral amygdala between ERK1/2 and CaMKIIα-dependent signaling substrates. J Neurosci 33:14693–14704. https://doi.org/10.1523/JNEUROSCI.1226-13.2013
Maccarrone M (2017) Metabolism of the endocannabinoid anandamide: Open questions after 25 years. Front Mol Neurosci 10 https://doi.org/10.3389/fnmol.2017.00166
Maren S (2001) Neurobiology of Pavlovian Fear Conditioning. Annu Rev Neurosci 24:897–931. https://doi.org/10.1146/annurev.neuro.24.1.897
Maren S (2006) The Amygdala, Synaptic Plasticity, and Fear Memory. Ann N Y Acad Sci 985:106–113. https://doi.org/10.1111/j.1749-6632.2003.tb07075.x
Marsicano G, Wotjak CT, Azad SC et al (2002) The endogenous cannabinoid system controls extinction of aversive memories. Nature 418:530–534. https://doi.org/10.1038/nature00839
Marsicano G, Lutz B (1999) Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur J Neurosci 11:4213–4225. https://doi.org/10.1046/j.1460-9568.1999.00847.x
Masneuf S, Lowery-Gionta E, Colacicco G et al (2014) Glutamatergic mechanisms associated with stress-induced amygdala excitability and anxiety-related behavior. Neuropharmacology 85:190–197. https://doi.org/10.1016/j.neuropharm.2014.04.015
McGaugh JL (2004) THE AMYGDALA MODULATES THE CONSOLIDATION OF MEMORIES OF EMOTIONALLY AROUSING EXPERIENCES. Annu Rev Neurosci 27:1–28. https://doi.org/10.1146/annurev.neuro.27.070203.144157
Millan MJ (2003) The neurobiology and control of anxious states. Prog Neurobiol 70:83–244. https://doi.org/10.1016/S0301-0082(03)00087-X
Mock ED, Mustafa M, Gunduz-Cinar O et al (2020) Discovery of a NAPE-PLD inhibitor that modulates emotional behavior in mice. Nat Chem Biol 16:667–675. https://doi.org/10.1038/s41589-020-0528-7
Moreira FA, Kaiser N, Monory K, Lutz B (2008) Reduced anxiety-like behaviour induced by genetic and pharmacological inhibition of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH) is mediated by CB1 receptors. Neuropharmacology 54:141–150. https://doi.org/10.1016/j.neuropharm.2007.07.005
Morena M, Aukema RJ, Leitl KD et al (2019) Upregulation of Anandamide Hydrolysis in the Basolateral Complex of Amygdala Reduces Fear Memory Expression and Indices of Stress and Anxiety. J Neurosci 39:1275–1292. https://doi.org/10.1523/JNEUROSCI.2251-18.2018
Neumeister A, Normandin MD, Pietrzak RH et al (2013) Elevated brain cannabinoid CB1 receptor availability in post-traumatic stress disorder: a positron emission tomography study. Mol Psychiatry 18:1034–1040. https://doi.org/10.1038/mp.2013.61
Owada Y, Yoshimoto T, Kondo H (1996) Spatio-temporally differential expression of genes for three members of fatty acid binding proteins in developing and mature rat brains. J Chem Neuroanat 12:113–122. https://doi.org/10.1016/S0891-0618(96)00192-5
Packard MG (2001) Amygdala modulation of multiple memory systems. Memory consolidation: Essays in honor of James L. McGaugh. American Psychological Association, Washington, pp 201–218
Park J, Moghaddam B (2017) Impact of anxiety on prefrontal cortex encoding of cognitive flexibility. Neuroscience 345:193–202. https://doi.org/10.1016/j.neuroscience.2016.06.013
Paxinos G, Watson C (2013) The Rat Brain in Stereotaxic Coordinates: Hard Cover Edition, 6th edn. Academic Press, San Diego
Quirk GJ, Likhtik E, Pelletier JG, Paré D (2003) Stimulation of Medial Prefrontal Cortex Decreases the Responsiveness of Central Amygdala Output Neurons. J Neurosci 23:8800–8807. https://doi.org/10.1523/JNEUROSCI.23-25-08800.2003
Renard J, Szkudlarek HJ, Kramar CP, et al (2017) Adolescent THC exposure causes enduring prefrontal cortical disruption of GABAergic inhibition and dysregulation of sub-cortical dopamine function. Sci Rep 7:11420. https://doi.org/10.1038/s41598-017-11645-8
Roberto M, Cruz M, Bajo M et al (2010) The Endocannabinoid System Tonically Regulates Inhibitory Transmission and Depresses the Effect of Ethanol in Central Amygdala. Neuropsychopharmacology 35:1962–1972. https://doi.org/10.1038/npp.2010.70
Rosenkranz JA, Moore H, Grace AA (2003) The prefrontal cortex regulates lateral amygdala neuronal plasticity and responses to previously conditioned stimuli. J Neurosci 23:11054–11064
Rosenkranz JA, Grace AA (2002) Cellular Mechanisms of Infralimbic and Prelimbic Prefrontal Cortical Inhibition and Dopaminergic Modulation of Basolateral Amygdala Neurons In Vivo. J Neurosci 22:324–337. https://doi.org/10.1523/JNEUROSCI.22-01-00324.2002
Rubino T, Realini N, Castiglioni C et al (2008) Role in Anxiety Behavior of the Endocannabinoid System in the Prefrontal Cortex. Cereb Cortex 18:1292–1301. https://doi.org/10.1093/cercor/bhm161
Ruehle S, Rey AA, Remmers F, Lutz B (2012) The endocannabinoid system in anxiety, fear memory and habituation. J Psychopharmacol 26:23–39
Sato W, Kochiyama T, Uono S et al (2011) Rapid amygdala gamma oscillations in response to fearful facial expressions. Neuropsychologia 49:612–617. https://doi.org/10.1016/j.neuropsychologia.2010.12.025
Scherma M, Medalie J, Fratta W et al (2008) The endogenous cannabinoid anandamide has effects on motivation and anxiety that are revealed by fatty acid amide hydrolase (FAAH) inhibition. Neuropharmacology 54:129–140. https://doi.org/10.1016/j.neuropharm.2007.08.011
Scherma M, Masia P, Satta V et al (2019) Brain activity of anandamide: a rewarding bliss? Acta Pharmacol Sin 40:309–323
Slanina KA, Schweitzer P (2005) Inhibition of cyclooxygenase-2 elicits a CB1-mediated decrease of excitatory transmission in rat CA1 hippocampus. Neuropharmacology 49:653–659. https://doi.org/10.1016/j.neuropharm.2005.04.019
Slouzkey I, Maroun M (2016) PI3-kinase cascade has a differential role in acquisition and extinction of conditioned fear memory in juvenile and adult rats. Learn Mem 23:723–731. https://doi.org/10.1101/lm.041806.116
Sohal VS (2012) Insights into Cortical Oscillations Arising from Optogenetic Studies. Biol Psychiatry 71:1039–1045. https://doi.org/10.1016/j.biopsych.2012.01.024
Spohrs J, Ulrich M, Grön G et al (2022) FAAH polymorphism (rs324420) modulates extinction recall in healthy humans: an fMRI study. Eur Arch Psychiatry Clin Neurosci 272:1495–1504. https://doi.org/10.1007/s00406-021-01367-4
Stempel AV, Stumpf A, Zhang H-Y et al (2016) Cannabinoid Type 2 Receptors Mediate a Cell Type-Specific Plasticity in the Hippocampus. Neuron 90:795–809. https://doi.org/10.1016/j.neuron.2016.03.034
Szkudlarek HJ, Desai SJ, Renard J et al (2019) Δ-9-Tetrahydrocannabinol and Cannabidiol produce dissociable effects on prefrontal cortical executive function and regulation of affective behaviors. Neuropsychopharmacology 44:817–825. https://doi.org/10.1038/s41386-018-0282-7
Tan H, Lauzon NM, Bishop SF et al (2010) Integrated cannabinoid CB1 receptor transmission within the amygdala-prefrontal cortical pathway modulates neuronal plasticity and emotional memory encoding. Cereb Cortex 20:1486–1496. https://doi.org/10.1093/cercor/bhp210
Tan H, Lauzon NM, Bishop SF et al (2011) Cannabinoid transmission in the basolateral amygdala modulates fear memory formation via functional inputs to the prelimbic cortex. J Neurosci 31:5300–5312. https://doi.org/10.1523/JNEUROSCI.4718-10.2011
Thanos PK, Clavin BH, Hamilton J, O'Rourke JR, Maher T, Koumas C, Miao E, Lankop J, Elhage A, Haj-Dahmane S, Deutsch D, Kaczocha M (2016) Examination of the addictive and behavioral properties of fatty acid-binding protein inhibitor SBFI26. Front Psychiatry 7. https://doi.org/10.3389/fpsyt.2016.00054
Touriño C, Oveisi F, Lockney J et al (2010) FAAH deficiency promotes energy storage and enhances the motivation for food. Int J Obes 34:557–568. https://doi.org/10.1038/ijo.2009.262
Trazzi S, Steger M, Mitrugno VM et al (2010) CB1 Cannabinoid Receptors Increase Neuronal Precursor Proliferation through AKT/Glycogen Synthase Kinase-3β/β-Catenin Signaling. J Biol Chem 285:10098–10109. https://doi.org/10.1074/jbc.M109.043711
Turu G, Hunyady L (2010) Signal transduction of the CB1 cannabinoid receptor. J Mol Endocrinol 44:75–85. https://doi.org/10.1677/JME-08-0190
Tye KM, Prakash R, Kim SY et al (2011) Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471:358–362. https://doi.org/10.1038/nature09820
Ueda N, Yamamoto S (2000) Anandamide amidohydrolase (fatty acid amide hydrolase). Prostaglandins Other Lipid Mediat 61:19–28. https://doi.org/10.1016/S0090-6980(00)00052-6
Uzuneser TC, Szkudlarek HJ, Jones MJ et al (2022) Identification of a novel fatty acid binding protein-5-CB2 receptor-dependent mechanism regulating anxiety behaviors in the prefrontal cortex. Cereb Cortex. https://doi.org/10.1093/cercor/bhac220
Vaitheesvaran B, Yang L, Hartil K et al (2012) Peripheral Effects of FAAH Deficiency on Fuel and Energy Homeostasis: Role of Dysregulated Lysine Acetylation. PLoS One 7:e33717. https://doi.org/10.1371/journal.pone.0033717
Viveros M, Marco E, File S (2005) Endocannabinoid system and stress and anxiety responses. Pharmacol Biochem Behav 81:331–342. https://doi.org/10.1016/j.pbb.2005.01.029
Wartmann M, Campbell D, Subramanian A et al (1995) The MAP kinase signal transduction pathway is activated by the endogenous cannabinoid anandamide. FEBS Lett 359:133–136. https://doi.org/10.1016/0014-5793(95)00027-7
Wellman CL, Izquierdo A, Garrett JE et al (2007) Impaired Stress-Coping and Fear Extinction and Abnormal Corticolimbic Morphology in Serotonin Transporter Knock-Out Mice. J Neurosci 27:684–691. https://doi.org/10.1523/JNEUROSCI.4595-06.2007
Yan S, Elmes MW, Tong S et al (2018) SAR studies on truxillic acid mono esters as a new class of antinociceptive agents targeting fatty acid binding proteins. Eur J Med Chem 154:233–252. https://doi.org/10.1016/j.ejmech.2018.04.050
Yao B, Mackie K (2009) Endocannabinoid Receptor Pharmacology. Curr Top Behav Neurosci 1:37–63. https://doi.org/10.1007/978-3-540-88955-7_2
Yen Y-C, Mauch CP, Dahlhoff M et al (2012) Increased levels of conditioned fear and avoidance behavior coincide with changes in phosphorylation of the protein kinase B (AKT) within the amygdala in a mouse model of extremes in trait anxiety. Neurobiol Learn Mem 98:56–65. https://doi.org/10.1016/j.nlm.2012.04.009
Yu S, Levi L, Casadesus G et al (2014) Fatty acid-binding protein 5 (fabp5) regulates cognitive function both by decreasing anandamide levels and by activating the nuclear receptor peroxisome proliferatoractivated receptor α/β (pparα/β) in the brain. J Biol Chem 289:12748–12758. https://doi.org/10.1074/jbc.M114.559062
Zimmerman JM, Maren S (2010) NMDA receptor antagonism in the basolateral but not central amygdala blocks the extinction of Pavlovian fear conditioning in rats. European J Neurosci No-No. https://doi.org/10.1111/j.1460-9568.2010.07223.x
Zimmermann T, Bartsch JC, Beer A et al (2019) Impaired anandamide/palmitoylethanolamide signaling in hippocampal glutamatergic neurons alters synaptic plasticity, learning, and emotional responses. Neuropsychopharmacology 44:1377–1388. https://doi.org/10.1038/s41386-018-0274-7
Acknowledgements
This work was supported by Artelo Biosciences, Mitacs Canada, and a Natural Sciences and Engineering Research Council (NSERC) fellowship to M.J.J.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Jones, M.J., Uzuneser, T.C., Clement, T. et al. Inhibition of fatty acid binding protein-5 in the basolateral amygdala induces anxiolytic effects and accelerates fear memory extinction. Psychopharmacology 241, 119–138 (2024). https://doi.org/10.1007/s00213-023-06468-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00213-023-06468-7