Skip to main content

Advertisement

Log in

Opioid withdrawal: role in addiction and neural mechanisms

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Withdrawal from opioids involves a negative affective state that promotes maintenance of drug-seeking behavior and relapse. As such, understanding the neurobiological mechanisms underlying withdrawal from opioid drugs is critical as scientists and clinicians seek to develop new treatments and therapies. In this review, we focus on the neural systems known to mediate the affective and somatic signs and symptoms of opioid withdrawal, including the mesolimbic dopaminergic system, basolateral amygdala, extended amygdala, and brain and hormonal stress systems. Evidence from preclinical studies suggests that these systems are altered following opioid exposure and that these changes mediate behavioral signs of negative affect such as aversion and anxiety during withdrawal. Adaptations in these systems also parallel the behavioral and psychological features of opioid use disorder (OUD), highlighting the important role of withdrawal in the development of addictive behavior. Implications for relapse and treatment are discussed as well as promising avenues for future research, with the hope of promoting continued progress toward characterizing neural contributors to opioid withdrawal and compulsive opioid use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AbdelWahab MA, Abou El Magd SF, Grella CE et al (2018) An examination of motives for tramadol and heroin use in an Egyptian sample. J Addict Dis 37:123–134

    Article  PubMed  Google Scholar 

  • Aghajanian GK, Kogan JH, Moghaddam B (1994) Opiate withdrawal increases glutamate and aspartate efflux in the locus coeruleus: an in vivo microdialysis study. Brain Res 636(1):126–130

    Article  CAS  PubMed  Google Scholar 

  • Ahmed SH (2004) Addiction as compulsive reward prediction. Science 306:1901–1902

    Article  CAS  PubMed  Google Scholar 

  • Akaoka H, Aston-Jones G (1991) Opiate withdrawal-induced hyperactivity of locus coeruleus neurons is substantially mediated by augmented excitatory amino acid input. J Neurosci 11.12 (1991):3830–3839

  • Almela P, Navarro-Zaragoza J, García-Carmona J-A et al (2012) Role of corticotropin-releasing factor (CRF) receptor-1 on the catecholaminergic response to morphine withdrawal in the nucleus accumbens (NAc). PLoS ONE 7:e47089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Bagnarol Y, Marchette RC, Francis C, Morales M, Vendruscolo LF (2022) Neuronal correlates of hyperalgesia and somatic signs of heroin withdrawal in male and female mice. Eneuro 9(4)

  • Ambroggi F, Ishikawa A, Fields HL, Nicola SM (2008) Basolateral amygdala neurons facilitate reward-seeking behavior by exciting nucleus accumbens neurons. Neuron 59:648–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). https://doi.org/10.1176/appi.books.9780890425596

  • Aston-Jones G, Delfs JM, Druhan J, Zhu Y (1999) The bed nucleus of the stria terminalis. A target site for noradrenergic actions in opiate withdrawal. Ann N Y Acad Sci 877:486–498

    Article  CAS  PubMed  Google Scholar 

  • Azizi H, Mirnajafi-Zadeh J, Rohampour K, Semnanian S (2010) Antagonism of orexin type 1 receptors in the locus coeruleus attenuates signs of naloxone-precipitated morphine withdrawal in rats. Neurosci Lett 482:255–259

    Article  CAS  PubMed  Google Scholar 

  • Bagley EE, Chieng BCH, Christie MJ, Connor M (2005) Opioid tolerance in periaqueductal gray neurons isolated from mice chronically treated with morphine. Br J Pharmacol 146:68–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagley EE, Hacker J, Chefer VI et al (2011) Drug-induced GABA transporter currents enhance GABA release to induce opioid withdrawal behaviors. Nat Neurosci 14:1548–1554

    Article  CAS  PubMed  Google Scholar 

  • Baidoo N, Wolter M, Holahan MR et al (2021) The effects of morphine withdrawal and conditioned withdrawal on memory consolidation and c-Fos expression in the central amygdala. Addict Biol 26:e12909

    Article  CAS  PubMed  Google Scholar 

  • Bajo M, Madamba SG, Roberto M, Siggins GR (2014) Acute morphine alters GABAergic transmission in the central amygdala during naloxone-precipitated morphine withdrawal: role of cyclic AMP. Front Integr Neurosci 8:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballantyne JC, Sullivan MD, Koob GF (2019) Refractory dependence on opioid analgesics. Pain 160:2655–2660

    Article  CAS  PubMed  Google Scholar 

  • Baumgartner HM, Schulkin J, Berridge KC (2021) Activating corticotropin-releasing factor systems in the nucleus accumbens, amygdala, and bed nucleus of stria terminalis: incentive motivation or aversive motivation? Biol Psychiatry 89:1162–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell J, Strang J (2020) Medication treatment of opioid use disorder. Biol Psychiat 87(1):82–88

    Article  CAS  PubMed  Google Scholar 

  • Benavides M, Laorden ML, García-Borrón JC, Milanés MV (2003) Regulation of tyrosine hydroxylase levels and activity and Fos expression during opioid withdrawal in the hypothalamic PVN and medulla oblongata catecholaminergic cell groups innervating the PVN. Eur J Neurosci 17:103–112

    Article  PubMed  Google Scholar 

  • Berke JD (2018) What does dopamine mean? Nat Neurosci 21:787–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianchetti A, Guidice A, Nava F, Manara L (1986) Dissociation of morphine withdrawal diarrhea and jumping in mice by the peripherally selective opioid antagonist SR 58002 C. Life Sci 39:2297–2303

    Article  CAS  PubMed  Google Scholar 

  • Bobzean SAM, Kokane SS, Butler BD, Perrotti LI (2019) Sex differences in the expression of morphine withdrawal symptoms and associated activity in the tail of the ventral tegmental area. Neurosci Lett 705:124–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonci A, Williams JT (1997) Increased probability of GABA release during withdrawal from morphine. J Neurosci 17:796–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosse GD, Cadeddu R, Floris G, Farero RD, Vigato E, Lee SJ, ... & Peterson RT (2021) The 5α-reductase inhibitor finasteride reduces opioid self-administration in animal models of opioid use disorder. J Clin Invest 131(10)

  • Bossert JM, Hoots JK, Fredriksson I et al (2019) Role of mu, but not delta or kappa, opioid receptors in context-induced reinstatement of oxycodone seeking. Eur J Neurosci 50:2075–2085

    Article  PubMed  Google Scholar 

  • Bossert JM, Townsend EA, Altidor LK-P, Fredriksson I, Shekara A, Husbands S, et al (2022) Sex differences in the effect of chronic delivery of the buprenorphine analogue BU08028 on heroin relapse and choice in a rat model of opioid maintenance. Br J Pharmacol 179:227–241

  • Boulos LJ, Ben Hamida S, Bailly J et al (2020) Mu opioid receptors in the medial habenula contribute to naloxone aversion. Neuropsychopharmacology 45:247–255

    Article  CAS  PubMed  Google Scholar 

  • Bradley BP, Gossop M, Phillips GT, Legarda JJ (1987) The development of an opiate withdrawal scale (OWS). Br J Addict 82:1139–1142

    Article  CAS  PubMed  Google Scholar 

  • Brownstein MJ, Palkovits M (1984) Classical transmitters in the CNS, Pt 1. Handbook of Chem Neuroanatomy 2:23–54

    Google Scholar 

  • Bruijnzeel AW (2009) kappa-Opioid receptor signaling and brain reward function. Brain Res Rev 62:127–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruneau A, Frimerman L, Verner M et al (2021) Day-to-day opioid withdrawal symptoms, psychological distress, and opioid craving in patients with chronic pain prescribed opioid therapy. Drug Alcohol Depend 225:108787

    Article  CAS  PubMed  Google Scholar 

  • Cabral A, Ruggiero RN, Nobre MJ et al (2009) GABA and opioid mechanisms of the central amygdala underlie the withdrawal-potentiated startle from acute morphine. Prog Neuropsychopharmacol Biol Psychiatry 33:334–344

    Article  CAS  PubMed  Google Scholar 

  • Cai Y-Q, Hou Y-Y, Pan ZZ (2020) GluA1 in central amygdala increases pain but inhibits opioid withdrawal-induced aversion. Mol Pain 16:1744806920911543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caillé S, Espejo EF, Reneric J-P et al (1999) Total neurochemical lesion of noradrenergic neurons of the locus ceruleus does not alter either naloxone-precipitated or spontaneous opiate withdrawal nor does it influence ability of clonidine to reverse opiate withdrawal. J Pharmacol Exp Ther 290:881–892

    PubMed  Google Scholar 

  • Carlezon WA Jr, Thomas MJ (2009) Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis. Neuropharmacology 56(Suppl 1):122–132

    Article  CAS  PubMed  Google Scholar 

  • Carrera MR, Schulteis G, Koob GF (1999) Heroin self-administration in dependent Wistar rats: increased sensitivity to naloxone. Psychopharmacology 144:111–120

    Article  CAS  PubMed  Google Scholar 

  • Centers for Disease Control and Prevention (2022) U.S. overdose deaths in 2021 increased half as much as in 2020 — but are still up 15%. Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/pressroom/nchs_press_releases/2022/202205.htm

  • Chakrabarti S, Prather PL, Yu L et al (1995) Expression of the μ-opioid receptor in CHO cells: Ability of μ-opioid ligands to promote α-azidoanilido[32P]GTP labeling of multiple G protein α subunits. J Neurochem 64:2534–2543

    Article  CAS  PubMed  Google Scholar 

  • Chan P, Lutfy K (2016) Molecular changes in opioid addiction: the role of adenylyl cyclase and cAMP/PKA system. Prog Mol Biol Transl Sci 137:203–227

    Article  PubMed  Google Scholar 

  • Chartoff EH, Papadopoulou M, Konradi C, Carlezon WA (2003) Effects of naloxone-precipitated morphine withdrawal on glutamate-mediated signaling in striatal neurons in vitro. Ann N Y Acad Sci 1003:368–371

    Article  PubMed  Google Scholar 

  • Chartoff EH, Mague SD, Barhight MF et al (2006) Behavioral and molecular effects of dopamine D1 receptor stimulation during naloxone-precipitated morphine withdrawal. J Neurosci 26:6450–6457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chartoff EH, Barhight MF, Mague SD et al (2009) Anatomically dissociable effects of dopamine D1 receptor agonists on reward and relief of withdrawal in morphine-dependent rats. Psychopharmacology 204:227–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chieng B, Christie MJ (1996) Local opioid withdrawal in rat single periaqueductal gray neurons in vitro. J Neurosci 16:7128–7136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chieng B, Keay KA, Christie MJ (1995) Increased fos-like immunoreactivity in the periaqueductal gray of anaesthetised rats during opiate withdrawal. Neurosci Lett 183:79–82

    Article  CAS  PubMed  Google Scholar 

  • Christie MJ, Williams JT, Osborne PB, Bellchambers CE (1997) Where is the locus in opioid withdrawal? Trends Pharmacol Sci 18:134–140

    Article  CAS  PubMed  Google Scholar 

  • Chu LF, Lin JC, Clemenson A et al (2015) Acute opioid withdrawal is associated with increased neural activity in reward-processing centers in healthy men: a functional magnetic resonance imaging study. Drug Alcohol Depend 153:314–322

    Article  PubMed  Google Scholar 

  • Cicero TJ, Ellis MS (2017) Understanding the demand side of the prescription opioid epidemic: does the initial source of opioids matter? Drug Alcohol Depend 173(Suppl 1):S4–S10

    Article  PubMed  Google Scholar 

  • Cicero TJ, Aylward SC, Meyer ER (2003) Gender differences in the intravenous self-administration of mu opiate agonists. Pharmacol Biochem Behav 74:541–549

    Article  CAS  PubMed  Google Scholar 

  • Cole SL, Robinson MJF, Berridge KC (2018) Optogenetic self-stimulation in the nucleus accumbens: D1 reward versus D2 ambivalence. PLoS ONE 13:e0207694

    Article  PubMed  PubMed Central  Google Scholar 

  • Collins AL, Aitken TJ, Huang I-W et al (2019) Nucleus accumbens cholinergic interneurons oppose cue-motivated behavior. Biol Psychiatry 86:388–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contarino A, Papaleo F (2005) The corticotropin-releasing factor receptor-1 pathway mediates the negative affective states of opiate withdrawal. Proc Natl Acad Sci U S A 102:18649–18654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craft RM, Stratmann JA, Bartok RE et al (1999) Sex differences in development of morphine tolerance and dependence in the rat. Psychopharmacology 143:1–7

    Article  CAS  PubMed  Google Scholar 

  • Criner SH, Liu J, Schulteis G (2007) Rapid neuroadaptation in the nucleus accumbens and bed nucleus of the stria terminalis mediates suppression of operant responding during withdrawal from acute opioid dependence. Neuroscience 144:1436–1446

    Article  CAS  PubMed  Google Scholar 

  • Crow TJ (1972) A map of the rat mesencephalon for electrical self-stimulation. Brain Res 36:265–273

    Article  CAS  PubMed  Google Scholar 

  • Culpepper-Morgan JA, Kreek MJ (1997) Hypothalamic-pituitary-adrenal axis hypersensitivity to naloxone in opioid dependence: a case of naloxone-induced withdrawal. Metabolism 46:130–134

    Article  CAS  PubMed  Google Scholar 

  • de Guglielmo G, Kallupi M, Scuppa G et al (2017) Pioglitazone attenuates the opioid withdrawal and vulnerability to relapse to heroin seeking in rodents. Psychopharmacology 234:223–234

    Article  PubMed  Google Scholar 

  • de Guglielmo G, Kallupi M, Sedighim S et al (2019) Dopamine D3 receptor antagonism reverses the escalation of oxycodone self-administration and decreases withdrawal-induced hyperalgesia and irritability-like behavior in oxycodone-dependent heterogeneous stock rats. Front Behav Neurosci 13:292

    Article  PubMed  Google Scholar 

  • Deji C, Yan P, Ji Y et al (2022) The basolateral amygdala to ventral hippocampus circuit controls anxiety-like behaviors induced by morphine withdrawal. Front Cell Neurosci 16:894886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delfs JM, Zhu Y, Druhan JP, Aston-Jones G (2000) Noradrenaline in the ventral forebrain is critical for opiate withdrawal-induced aversion. Nature 403:430–434

    Article  CAS  PubMed  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85:5274–5278

    Article  PubMed  PubMed Central  Google Scholar 

  • Diana M, Pistis M, Muntoni A, Gessa G (1995) Profound decrease of mesolimbic dopaminergic neuronal activity in morphine withdrawn rats. J Pharmacol Exp Ther 272:781–785

    CAS  PubMed  Google Scholar 

  • Diana M, Muntoni AL, Pistis M et al (1999) Lasting reduction in mesolimbic dopamine neuronal activity after morphine withdrawal. Eur J Neurosci 11:1037–1041

    Article  CAS  PubMed  Google Scholar 

  • Dinur-Klein L, Dannon P, Hadar A et al (2014) Smoking cessation induced by deep repetitive transcranial magnetic stimulation of the prefrontal and insular cortices: a prospective, randomized controlled trial. Biol Psychiatry 76:742–749

    Article  PubMed  Google Scholar 

  • Dole VP, Nyswander ME, Kreek MJ (1966) Narcotic blockade. Arch Intern Med 118:304–309

    Article  CAS  PubMed  Google Scholar 

  • Droutman V, Read SJ, Bechara A (2015) Revisiting the role of the insula in addiction. Trends Cogn Sci 19:414–420

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunn KE, Huhn AS, Bergeria CL et al (2019) Non-opioid neurotransmitter systems that contribute to the opioid withdrawal syndrome: a review of preclinical and human evidence. J Pharmacol Exp Ther 371:422–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards S, Vendruscolo LF, Schlosburg JE et al (2012) Development of mechanical hypersensitivity in rats during heroin and ethanol dependence: alleviation by CRF1 receptor antagonism. Neuropharmacology 62:1142–1151

    Article  CAS  PubMed  Google Scholar 

  • Epstein DH (2020) Let’s agree to agree: a comment on Hogarth (2020), with a plea for not-so-competing theories of addiction. Neuropsychopharmacology 45:715–716

    Article  PubMed  PubMed Central  Google Scholar 

  • Fadok JP, Markovic M, Tovote P, Lüthi A (2018) New perspectives on central amygdala function. Curr Opin Neurobiol 49:141–147

    Article  CAS  PubMed  Google Scholar 

  • Farrell M (1994) Opiate withdrawal. Addiction 89(11):1471–1475

    Article  CAS  PubMed  Google Scholar 

  • Field M, Kersbergen I (2020) Are animal models of addiction useful? Addiction 115:6–12

    Article  PubMed  Google Scholar 

  • Forray MI, Gysling K (2004) Role of noradrenergic projections to the bed nucleus of the stria terminalis in the regulation of the hypothalamic–pituitary–adrenal axis. Brain Res Rev 47:145–160

    Article  CAS  PubMed  Google Scholar 

  • Fox ME, Rodeberg NT, Wightman RM (2017) Reciprocal catecholamine changes during opiate exposure and withdrawal. Neuropsychopharmacology 42:671–681

    Article  CAS  PubMed  Google Scholar 

  • Fragale JE, James MH, Aston-Jones G (2021) Intermittent self-administration of fentanyl induces a multifaceted addiction state associated with persistent changes in the orexin system. Addict Biol 26:e12946

    Article  CAS  PubMed  Google Scholar 

  • Francesconi W, Szücs A, Berton F et al (2017) Opiate dependence induces cell type-specific plasticity of intrinsic membrane properties in the rat juxtacapsular bed nucleus of stria terminalis (jcBNST). Psychopharmacology 234:3485–3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco-García A, Fernández-Gómez FJ, Gómez-Murcia V, Hidalgo JM, Milanés MV, Núñez C (2022) Molecular Mechanisms Underlying the Retrieval and Extinction of Morphine Withdrawal-Associated Memories in the Basolateral Amygdala and Dentate Gyrus. Biomedicines 10(3):588

  • Frank JW, Levy C, Matlock DD, Calcaterra SL, Mueller SR, Koester S, Binswanger IA (2016) Patients’ perspectives on tapering of chronic opioid therapy: a qualitative study. Pain Med 17(10):1838–1847

    Article  PubMed  PubMed Central  Google Scholar 

  • Fredriksson I, Applebey SV, Minier-Toribio A, Shekara A, Bossert JM, Shaham Y (2020) Effect of the dopamine stabilizer (-)-OSU6162 on potentiated incubation of opioid craving after electric barrier-induced voluntary abstinence. Neuropsychopharmacology 45:770–779

  • Frenois F, Cador M, Caillé S et al (2002) Neural correlates of the motivational and somatic components of naloxone-precipitated morphine withdrawal: brain areas underlying morphine withdrawal. Eur J Neurosci 16:1377–1389

    Article  PubMed  Google Scholar 

  • Fuentealba JA, Forray MI, Gysling K (2000) Chronic morphine treatment and withdrawal increase extracellular levels of norepinephrine in the rat bed nucleus of the stria terminalis. J Neurochem 75:741–748

    Article  CAS  PubMed  Google Scholar 

  • Fuertes G, Laorden ML, Milanés MV (2000) Noradrenergic and dopaminergic activity in the hypothalamic paraventricular nucleus after naloxone-induced morphine withdrawal. Neuroendocrinology 71:60–67

    Article  CAS  PubMed  Google Scholar 

  • Fulenwider HD, Nennig SE, Hafeez H, Price ME, Baruffaldi F, Pravetoni M, Cheng K, Rice KC, Manvich DF, Schank JR (2020) Sex differences in oral oxycodone self‐administration and stress‐primed reinstatement in rats. Addict Biol 25(6)

  • Fulford AJ, Harbuz MS (2005) An introduction to the HPA axis. In Techniques in the behavioral and neural sciences (Vol. 15, pp. 43–65). Elsevier

  • Galligan JJ, Akbarali HI (2014) Molecular physiology of enteric opioid receptors. Am J Gastroenterol Suppl 2:17–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Carmona J-A, Baroja-Mazo A, Milanés M-V, Laorden ML (2015a) Sex differences between CRF1 receptor deficient mice following naloxone-precipitated morphine withdrawal in a conditioned place aversion paradigm: implication of HPA axis. PLoS ONE 10:e0121125

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Pérez D, Milanés MV (2020) Role of glucocorticoids on noradrenergic and dopaminergic neurotransmission within the basolateral amygdala and dentate gyrus during morphine withdrawal place aversion. Addict Biol 25:e12728

    Article  PubMed  Google Scholar 

  • García-Pérez D, Laorden ML, Milanés MV, Núñez C (2012) Glucocorticoids regulation of FosB/ΔFosB expression induced by chronic opiate exposure in the brain stress system. PLoS ONE 7:e50264

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Pérez D, Ferenczi S, Kovács KJ et al (2016) Different contribution of glucocorticoids in the basolateral amygdala to the formation and expression of opiate withdrawal-associated memories. Psychoneuroendocrinology 74:350–362

    Article  PubMed  Google Scholar 

  • Gellert VF, Holtzman SG (1978) Development and maintenance of morphine tolerance and dependence in the rat by scheduled access to morphine drinking solutions. J Pharmacol Exp Ther 205:536–546

    CAS  PubMed  Google Scholar 

  • George, B. E., Dawes, M. H., Peck, E. G., & Jones, S. R. (2022). Altered Accumbal Dopamine Terminal Dynamics Following Chronic Heroin Self-Administration. International Journal of Molecular Sciences, 23(15), 8106.

  • Glass MJ, Hegarty DM, Oselkin M et al (2008) Conditional deletion of the NMDA-NR1 receptor subunit gene in the central nucleus of the amygdala inhibits naloxone-induced conditioned place aversion in morphine-dependent mice. Exp Neurol 213:57–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glynn LM, Davis EP, Sandman CA (2013) New insights into the role of perinatal HPA-axis dysregulation in postpartum depression. Neuropeptides 47:363–370

    Article  CAS  PubMed  Google Scholar 

  • Gogolla N (2017) The insular cortex. Curr Biol 27:R580–R586

    Article  CAS  PubMed  Google Scholar 

  • Gowing L, Farrell M, Ali R, White JM. Alpha2‐adrenergic agonists for the management of opioid withdrawal. Cochrane Database of Systematic Reviews 2016, Issue 5. Art. No.: CD002024. DOI: 10.1002/14651858.CD002024.pub5.

  • Gracy KN, Dankiewicz LA, Koob GF (2001) Opiate withdrawal-induced fos immunoreactivity in the rat extended amygdala parallels the development of conditioned place aversion. Neuropsychopharmacology 24:152–160

    Article  CAS  PubMed  Google Scholar 

  • Greenwell TN, Walker BM, Cottone P et al (2009) The α1 adrenergic receptor antagonist prazosin reduces heroin self-administration in rats with extended access to heroin administration. Pharmacol Biochem Behav 91:295–302

    Article  CAS  PubMed  Google Scholar 

  • Guo L-B, Yu C, Ling Q-L et al (2019) Proteomic analysis of male rat nucleus accumbens, dorsal hippocampus and amygdala on conditioned place aversion induced by morphine withdrawal. Behav Brain Res 372:112008

    Article  CAS  PubMed  Google Scholar 

  • Hack SP, Vaughan CW, Christie MJ (2003) Modulation of GABA release during morphine withdrawal in midbrain neurons in vitro. Neuropharmacol 45:575–584

    Article  CAS  Google Scholar 

  • Hamlin AS, Buller KM, Day TA, Osborne PB (2004) Effect of naloxone-precipitated morphine withdrawal on c-fos expression in rat corticotropin-releasing hormone neurons in the paraventricular hypothalamus and extended amygdala. Neurosci Lett 362:39–43

    Article  CAS  PubMed  Google Scholar 

  • Harocopos A, Allen B, Paone D (2016) Circumstances and contexts of heroin initiation following non-medical opioid analgesic use in New York City. Int J Drug Policy 28:106–112

    Article  PubMed  Google Scholar 

  • Harris GC, Aston-Jones G (1994) Involvement of D2 dopamine receptors in the nucleus accumbens in the opiate withdrawal syndrome. Nature 371:155–157

    Article  CAS  PubMed  Google Scholar 

  • Harris AC, Gewirtz JC (2004) Elevated startle during withdrawal from acute morphine: a model of opiate withdrawal and anxiety. Psychopharmacology 171:140–147

    Article  CAS  PubMed  Google Scholar 

  • Harris AC, Atkinson DM, Aase DM, Gewirtz JC (2006) Double dissociation in the neural substrates of acute opiate dependence as measured by withdrawal-potentiated startle. Neuroscience 139:1201–1210

    Article  CAS  PubMed  Google Scholar 

  • Hayward MD, Duman RS, Nestler EJ (1990) Induction of the c-fos proto-oncogene during opiate withdrawal in the locus coeruleus and other regions of rat brain. Brain Res 525:256–266

    Article  CAS  PubMed  Google Scholar 

  • Hearing M, Graziane N, Dong Y, Thomas MJ (2018) Opioid and psychostimulant plasticity: targeting overlap in nucleus accumbens glutamate signaling. Trends Pharmacol Sci 39:276–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinrichs SC, Menzaghi F, Schulteis G et al (1995) Suppression of corticotropin-releasing factor in the amygdala attenuates aversive consequences of morphine withdrawal. Behav Pharmacol 6:74–80

    Article  CAS  PubMed  Google Scholar 

  • Heinz A, Daedelow LS, Wackerhagen C, Di Chiara G (2020) Addiction theory matters—why there is no dependence on caffeine or antidepressant medication. Addict Biol 25:e12735

    Article  PubMed  Google Scholar 

  • Heiwe S, Lönnquist I, Källmén H (2011) Potential risk factors associated with risk for drop-out and relapse during and following withdrawal of opioid prescription medication. Eur J Pain 15:966–970

    Article  PubMed  Google Scholar 

  • Hellemans KGC, Everitt BJ, Lee JLC (2006) Disrupting reconsolidation of conditioned withdrawal memories in the basolateral amygdala reduces suppression of heroin seeking in rats. J Neurosci 26:12694–12699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogarth L (2020) Addiction is driven by excessive goal-directed drug choice under negative affect: translational critique of habit and compulsion theory. Neuropsychopharmacol. https://doi.org/10.1038/s41386-020-0600-8

    Article  Google Scholar 

  • Holtz NA, Radke AK, Zlebnik NE et al (2015) Intracranial self-stimulation reward thresholds during morphine withdrawal in rats bred for high (HiS) and low (LoS) saccharin intake. Brain Res 1602:119–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooshmand B, Azizi H, Ahmadi-Soleimani SM, Semnanian S (2019) Synergistic effect of orexin-glutamate co-administration on spontaneous discharge rate of locus coeruleus neurons in morphine-dependent rats. Neurosci Lett 706:12–17

    Article  CAS  PubMed  Google Scholar 

  • Hosoya Y, Sugiura Y, Okado N et al (1991) Descending input from the hypothalamic paraventricular nucleus to sympathetic preganglionic neurons in the rat. Exp Brain Res 85:10–20

    Article  CAS  PubMed  Google Scholar 

  • Hou Y-Y, Cai Y-Q, Pan ZZ (2015) Persistent pain maintains morphine-seeking behavior after morphine withdrawal through reduced MeCP2 repression of GluA1 in rat central amygdala. J Neurosci 35:3689–3700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houshyar H, Gomez F, Manalo S et al (2003) Intermittent morphine administration induces dependence and is a chronic stressor in rats. Neuropsychopharmacol 28:1960–1972

    Article  CAS  Google Scholar 

  • Hutcheson DM, Everitt BJ, Robbins TW, Dickinson A (2001) The role of withdrawal in heroin addiction: enhances reward or promotes avoidance? Nat Neurosci 4:943–947

    Article  CAS  PubMed  Google Scholar 

  • Ingallinesi M, Rouibi K, Le Moine C et al (2012) CRF2 receptor-deficiency eliminates opiate withdrawal distress without impairing stress coping. Mol Psychiatry 17:1283–1294

    Article  CAS  PubMed  Google Scholar 

  • Ishida S, Shimosaka R, Kawasaki Y et al (2008) Involvement of the amygdala on place aversion induced by naloxone in single-dose morphine-treated rats. Yakugaku Zasshi 128:395–403

    Article  CAS  PubMed  Google Scholar 

  • Jafarova Demirkapu M, Yananlı HR, Kaleli M et al (2020) The role of adenosine A1 receptors in the nucleus accumbens during morphine withdrawal. Clin Exp Pharmacol Physiol 47:553–560

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Yang X, He G, Wang F, Wang Z, Xu W, Mao Y, Ma L, Wang F (2021) CRHCEA→VTA inputs inhibit the positive ensembles to induce negative effect of opiate withdrawal. Mol Psychiatry 26(11):6170–6186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones RT (1980) Dependence in non-addict humans after a single dose of morphine. In: Way EL (ed) Endogenous and exogenous opiate agonists and antagonists. Pergamon, pp 557–560

    Chapter  Google Scholar 

  • Joseph H, Stancliff S, Langrod J (2000) Methadone maintenance treatment (MMT): a review of historical and clinical issues. Mt Sinai J Med 67:347–364

    CAS  PubMed  Google Scholar 

  • Kang J, Compton DR, Vaz RJ, Rampe D (2016) Proarrhythmic mechanisms of the common anti-diarrheal medication loperamide: revelations from the opioid abuse epidemic. Naunyn Schmiedebergs Arch Pharmacol 389:1133–1137

    Article  CAS  PubMed  Google Scholar 

  • Kaufling J, Aston-Jones G (2015) Persistent adaptations in afferents to ventral tegmental dopamine neurons after opiate withdrawal. J Neurosci 35:10290–10303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keiflin R, Janak PH (2015) Dopamine prediction errors in reward learning and addiction: from theory to neural circuitry. Neuron 88:247–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelsey JE, Verhaak AMS, Schierberl KC (2015) The kappa-opioid receptor antagonist, nor-binaltorphimine (nor-BNI), decreases morphine withdrawal and the consequent conditioned place aversion in rats. Behav Brain Res 283:16–21

    Article  CAS  PubMed  Google Scholar 

  • Kenny PJ, Chen SA, Kitamura O et al (2006) Conditioned withdrawal drives heroin consumption and decreases reward sensitivity. J Neurosci 26:5894–5900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kest B, Palmese CA, Hopkins E et al (2001) Assessment of acute and chronic morphine dependence in male and female mice. Pharmacol Biochem Behav 70:149–156

    Article  CAS  PubMed  Google Scholar 

  • Kienbaum P, Thürauf N, Michel MC et al (1998) Profound increase in epinephrine concentration in plasma and cardiovascular stimulation after mu-opioid receptor blockade in opioid-addicted patients during barbiturate-induced anesthesia for acute detoxification. Anesthesiology 88:1154–1161

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Zhang X, Muralidhar S et al (2017) Basolateral to central amygdala neural circuits for appetitive behaviors. Neuron 93:1464-1479.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiyatkin EA (1995) Functional significance of mesolimbic dopamine. Neurosci Biobehav Rev 19:573–598

    Article  CAS  PubMed  Google Scholar 

  • Knoll AT, Muschamp JW, Sillivan SE et al (2011) Kappa opioid receptor signaling in the basolateral amygdala regulates conditioned fear and anxiety in rats. Biol Psychiatry 70:425–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koob GF (2013) Negative reinforcement in drug addiction: the darkness within. Curr Opin Neurobiol 23:559–563

    Article  CAS  PubMed  Google Scholar 

  • Koob GF (2020) Neurobiology of opioid addiction: opponent process, hyperkatifeia, and negative reinforcement. Biol Psychiatry 87:44–53

    Article  CAS  PubMed  Google Scholar 

  • Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35:217–238

    Article  PubMed  Google Scholar 

  • Koob GF, Stinus L, Le Moal M, Bloom FE (1989) Opponent process theory of motivation: neurobiological evidence from studies of opiate dependence. Neurosci Biobehav Rev 13:135–140

    Article  CAS  PubMed  Google Scholar 

  • Koob GF, Maldonado R, Stinus L (1992) Neural substrates of opiate withdrawal. Trends Neurosci 15:186–191

    Article  CAS  PubMed  Google Scholar 

  • Kosten TR, Baxter LE (2019) Review article: effective management of opioid withdrawal symptoms: a gateway to opioid dependence treatment. Am J Addict 28:55–62

    Article  PubMed  PubMed Central  Google Scholar 

  • Laorden ML, Ferenczi S, Pintér-Kübler B et al (2012) Hypothalamic orexin—a neurons are involved in the response of the brain stress system to morphine withdrawal. PLoS ONE 7:e36871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebow MA, Chen A (2016) Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as key to psychiatric disorders. Mol Psychiatry 21:450–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefevre EM, Pisansky MT, Toddes C et al (2020) Interruption of continuous opioid exposure exacerbates drug-evoked adaptations in the mesolimbic dopamine system. Neuropsychopharmacology 45:1781–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leri F, Tremblay A, Sorge RE, Stewart J (2004) Methadone maintenance reduces heroin- and cocaine-induced relapse without affecting stress-induced relapse in a rodent model of poly-drug use. Neuropsychopharmacol 29:1312–1320

    Article  CAS  Google Scholar 

  • Li C-L, Zhu N, Meng X-L et al (2013) Effects of inactivating the agranular or granular insular cortex on the acquisition of the morphine-induced conditioned place preference and naloxone-precipitated conditioned place aversion in rats. J Psychopharmacol 27:837–844

    Article  PubMed  Google Scholar 

  • Lichtenberg NT, Wassum KM (2017) Amygdala mu-opioid receptors mediate the motivating influence of cue-triggered reward expectations. Eur J Neurosci 45:381–387

    Article  PubMed  Google Scholar 

  • Yu G, Zhang F-Q, Tang S-E et al (2014) Continuous infusion versus intermittent bolus dosing of morphine: a comparison of analgesia, tolerance, and subsequent voluntary morphine intake. J Psychiatr Res 59:161–166

    Article  PubMed  Google Scholar 

  • Liu C, Cai X, Ritzau-Jost A, Kramer PF, Li Y, Khaliq ZM, ... & Kaeser PS (2022) An action potential initiation mechanism in distal axons for the control of dopamine release. Science 375(6587):1378–1385

  • Longnecker DE, Grazis PA, Eggers GW Jr (1973) Naloxone for antagonism of morphine-induced respiratory depression. Anesth Analg 52:447–453

    Article  CAS  PubMed  Google Scholar 

  • Loyd DR, Murphy AZ (2009) The role of the periaqueductal gray in the modulation of pain in males and females: are the anatomy and physiology really that different? Neural Plast 2009:462879

    Article  PubMed  PubMed Central  Google Scholar 

  • Lucas M, Frenois F, Vouillac C et al (2008) Reactivity and plasticity in the amygdala nuclei during opiate withdrawal conditioning: differential expression of c-fos and arc immediate early genes. Neuroscience 154:1021–1033

    Article  CAS  PubMed  Google Scholar 

  • Luster BR, Cogan ES, Schmidt KT et al (2020) Inhibitory transmission in the bed nucleus of the stria terminalis in male and female mice following morphine withdrawal. Addict Biol 25:e12748

    Article  PubMed  Google Scholar 

  • Lynch WJ, Carroll ME (1999) Sex differences in the acquisition of intravenously self-administered cocaine and heroin in rats. Psychopharmacology 144:77–82

    Article  CAS  PubMed  Google Scholar 

  • Lyons D, de Jaeger X, Rosen LG et al (2013) Opiate exposure and withdrawal induces a molecular memory switch in the basolateral amygdala between ERK1/2 and CaMKIIα-dependent signaling substrates. J Neurosci 33:14693–14704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magura S, Rosenblum A (2001) Leaving methadone treatment: lessons learned, lessons forgotten, lessons ignored. The Mount Sinai J Med, New York 68(1):62–74

    CAS  Google Scholar 

  • Maldonado R, Koob GF (1993) Destruction of the locus coeruleus decreases physical signs of opiate withdrawal. Brain Res 605(1):128–138

    Article  CAS  PubMed  Google Scholar 

  • Maldonado R, Negus S, Koob GF (1992a) Precipitation of morphine withdrawal syndrome in rats by administration of mu-, delta- and kappa-selective opioid antagonists. Neuropharmacology 31:1231–1241

    Article  CAS  PubMed  Google Scholar 

  • Maldonado R, Stinus L, Gold LH, Koob GF (1992b) Role of different brain structures in the expression of the physical morphine withdrawal syndrome. J Pharmacol Exp Ther 261:669–677

    CAS  PubMed  Google Scholar 

  • Maldonado R, Valverde O, Garbay C, Roques BP (1995) Protein kinases in the locus coeruleus and periaqueductal gray matter are involved in the expression of opiate withdrawal. Naunyn Schmiedebergs Arch Pharmacol 352:565–575

    Article  CAS  PubMed  Google Scholar 

  • Mamaligas AA, Cai Y, Ford CP (2016) Nicotinic and opioid receptor regulation of striatal dopamine D2-receptor mediated transmission. Sci Rep 6:37834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantsch JR, Baker DA, Funk D et al (2016) Stress-induced reinstatement of drug seeking: 20 years of progress. Neuropsychopharmacology 41:335–356

    Article  CAS  PubMed  Google Scholar 

  • Maren S (2003) The amygdala, synaptic plasticity, and fear memory. Ann N Y Acad Sci 985:106–113

    Article  PubMed  Google Scholar 

  • Martinez‐Casiano K, Ramos‐Ortolaza D, Chamorro J,  Torres‐Reveron A (2015) Development of conditioned place aversion to spontaneous morphine withdrawal during estradiol replacement. FASEB J 29:LB639

  • Martínez-Laorden E, Navarro-Zaragoza J, Milanés M-V et al (2020) Conditioned aversive memory associated with morphine withdrawal increases brain-derived neurotrophic factor in dentate gyrus and basolateral amygdala. Addict Biol 25:e12792

    Article  PubMed  Google Scholar 

  • Mavrikaki M, Pravetoni M, Page S et al (2017) Oxycodone self-administration in male and female rats. Psychopharmacology 234:977–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDevitt DS, McKendrick G, Graziane NM (2021) Anterior cingulate cortex is necessary for spontaneous opioid withdrawal and withdrawal-induced hyperalgesia in male mice. Neuropsychopharmacology 46:1990–1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald AJ (1998) Cortical pathways to the mammalian amygdala. Prog Neurobiol 55:257–332

    Article  CAS  PubMed  Google Scholar 

  • McNally GP, Akil H (2002) Role of corticotropin-releasing hormone in the amygdala and bed nucleus of the stria terminalis in the behavioral, pain modulatory, and endocrine consequences of opiate withdrawal. Neuroscience 112:605–617

    Article  CAS  PubMed  Google Scholar 

  • Milanés MV, Laorden ML, Angel E et al (2002) Effect of naloxone-precipitated morphine withdrawal on CRH and vasopressin mRNA expression in the rat hypothalamic paraventricular nucleus. Neurosci Lett 334:58–62

    Article  PubMed  Google Scholar 

  • Mitchell SG, Kelly SM, Brown BS et al (2009) Incarceration and opioid withdrawal: the experiences of methadone patients and out-of-treatment heroin users. J Psychoactive Drugs 41:145–152

    Article  PubMed  PubMed Central  Google Scholar 

  • Monroe SC, Radke AK (2021) Aversion-resistant fentanyl self-administration in mice. Psychopharmacology 238:699–710

    Article  CAS  PubMed  Google Scholar 

  • Mucha RF (1987) Is the motivational effect of opiate withdrawal reflected by common somatic indices of precipitated withdrawal? A place conditioning study in the rat. Brain Res 418:214–220

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Yamamoto R, Fujio M et al (2005) Involvement of the bed nucleus of the stria terminalis activated by the central nucleus of the amygdala in the negative affective component of morphine withdrawal in rats. Neuroscience 134:9–19

    Article  CAS  PubMed  Google Scholar 

  • Naqvi NH, Rudrauf D, Damasio H, Bechara A (2007) Damage to the insula disrupts addiction to cigarette smoking. Science 315:531–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nava F, Caldiroli E, Premi S, Lucchini A (2006) Relationship between plasma cortisol levels, withdrawal symptoms and craving in abstinent and treated heroin addicts. J Addict Dis 25:9–16

    Article  PubMed  Google Scholar 

  • Navarro-Zaragoza J, Martínez-Laorden E, Teruel-Fernández FJ et al (2021) Naloxone-induced conditioned place aversion score and extinction period are higher in C57BL/6J morphine-dependent mice than in Swiss: Role of HPA axis. Pharmacol Biochem Behav 201:173106

    Article  CAS  PubMed  Google Scholar 

  • Negus SS (2006) Choice between heroin and food in nondependent and heroin-dependent rhesus monkeys: effects of naloxone, buprenorphine, and methadone. J Pharmacol Exp Ther 317(2):711–723

  • Negus SS, Rice KC (2009) Mechanisms of withdrawal-associated increases in heroin self-administration: pharmacologic modulation of heroin vs food choice in heroin-dependent rhesus monkeys. Neuropsychopharmacology 34:899–911

    Article  CAS  PubMed  Google Scholar 

  • O’Neill P-K, Gore F, Salzman CD (2018) Basolateral amygdala circuitry in positive and negative valence. Curr Opin Neurobiol 49:175–183

    Article  PubMed  PubMed Central  Google Scholar 

  • Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47(6):419

  • Pantazis CB, Gonzalez LA, Tunstall BJ, Carmack SA, Koob GF, Vendruscolo LF (2021) Cues conditioned to withdrawal and negative reinforcement: Neglected but key motivational elements driving opioid addiction. Sci Adv 7(15):eabf0364

  • Park PE, Schlosburg JE, Vendruscolo LF et al (2015) Chronic CRF1 receptor blockade reduces heroin intake escalation and dependence-induced hyperalgesia. Addict Biol 20:275–284

    Article  CAS  PubMed  Google Scholar 

  • Parker LA, Joshi A (1998) Naloxone-precipitated morphine withdrawal induced place aversions: effect of naloxone at 24 hours postmorphine. Pharmacol Biochem Behav 61:331–333

    Article  CAS  PubMed  Google Scholar 

  • Pedrón VT, Varani AP, Balerio GN (2016) Baclofen prevents the elevated plus maze behavior and BDNF expression during naloxone precipitated morphine withdrawal in male and female mice. Synapse 70:187–197

    Article  PubMed  Google Scholar 

  • Pennington ZT, Trott JM, Rajbhandari AK et al (2020) Chronic opioid pretreatment potentiates the sensitization of fear learning by trauma. Neuropsychopharmacology 45:482–490

    Article  CAS  PubMed  Google Scholar 

  • Pergolizzi JV Jr, Raffa RB, Rosenblatt MH (2020) Opioid withdrawal symptoms, a consequence of chronic opioid use and opioid use disorder: current understanding and approaches to management. J Clin Pharm Ther 45:892–903

    Article  PubMed  Google Scholar 

  • Phillips AG, Fibiger HC (1980) The role of dopamine in maintaining intracranial self-stimulation in the ventral tegmentum, nucleus accumbens, and medial prefrontal cortex. Canadian J Psychology/revue Canadienne De Psychol 32:58

    Article  Google Scholar 

  • Piantadosi PT, Halladay LR, Radke AK, Holmes A (2021) Advances in understanding meso-cortico-limbic-striatal systems mediating risky reward seeking. J Neurochem 157:1547–1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piper ME (2015) Withdrawal: expanding a key addiction construct. Nicotine Tob Res 17:1405–1415

    Article  PubMed  PubMed Central  Google Scholar 

  • Ponterio G, Tassone A, Sciamanna G et al (2013) Powerful inhibitory action of mu opioid receptors (MOR) on cholinergic interneuron excitability in the dorsal striatum. Neuropharmacology 75:78–85

    Article  CAS  PubMed  Google Scholar 

  • Pothos E, Rada P, Mark GP, Hoebel BG (1991) Dopamine microdialysis in the nucleus accumbens during acute and chronic morphine, naloxone-precipitated withdrawal and clonidine treatment. Brain Res 566:348–350

    Article  CAS  PubMed  Google Scholar 

  • Punch LJ, Self DW, Nestler EJ, Taylor JR (1997) Opposite modulation of opiate withdrawal behaviors on microinfusion of a protein kinase A inhibitor versus activator into the locus coeruleus or periaqueductal gray. J Neurosci 17:8520–8527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rada P, Mark GP, Pothos E, Hoebel BG (1991) Systemic morphine simultaneously decreases extracellular acetylcholine and increases dopamine in the nucleus accumbens of freely moving rats. Neuropharmacology 30:1133–1136

    Article  CAS  PubMed  Google Scholar 

  • Rada PV, Mark GP, Taylor KM, Hoebel BG (1996) Morphine and naloxone, IP or locally, affect extracellular acetylcholine in the accumbens and prefrontal cortex. Pharmacol Biochem Behav 53:809–816

    Article  CAS  PubMed  Google Scholar 

  • Radke AK, Gewirtz JC (2012) Increased dopamine receptor activity in the nucleus accumbens shell ameliorates anxiety during drug withdrawal. Neuropsychopharmacology 37:2405–2415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radke AK, Rothwell PE, Gewirtz JC (2011) An anatomical basis for opponent process mechanisms of opiate withdrawal. J Neurosci 31:7533–7539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radke AK, Holtz NA, Gewirtz JC, Carroll ME (2013) Reduced emotional signs of opiate withdrawal in rats selectively bred for low (LoS) versus high (HiS) saccharin intake. Psychopharmacology 227:117–126

    Article  CAS  PubMed  Google Scholar 

  • Radke AK, Gewirtz JC, Carroll ME (2015) Effects of age, but not sex, on elevated startle during withdrawal from acute morphine in adolescent and adult rats. Behav Pharmacol 26:485–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radke AK, Sneddon EA, Monroe SC (2021) Studying sex differences in rodent models of addictive behavior. Curr Protoc 1:e119

    PubMed  PubMed Central  Google Scholar 

  • Rasmussen K, Aghajanian GK (1989) Withdrawal-induced activation of locus coeruleus neurons in opiate-dependent rats: attenuation by lesions of the nucleus paragigantocellularis. Brain Res 505:346–350

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen K, Beitner-Johnson DB, Krystal JH, Aghajanian GK, Nestler EJ (1990) Opiate withdrawal and the rat locus coeruleus: behavioral, electrophysiological, and biochemical correlates. J Neurosci 10(7):2308–2317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen K, Kendrick WT, Kogan JH, Aghajanian GK (1996) A selective AMPA antagonist, LY293558, suppresses morphine withdrawal-induced activation of locus coeruleus neurons and behavioral signs of morphine withdrawal. Neuropsychopharmacology 15:497–505

    Article  CAS  PubMed  Google Scholar 

  • Redish AD (2004) Addiction as a computational process gone awry. Science 306:1944–1947

    Article  CAS  PubMed  Google Scholar 

  • Riahi E, Mirzaii-Dizgah I, Karimian SM et al (2009) Attenuation of morphine withdrawal signs by a GABAB receptor agonist in the locus coeruleus of rats. Behav Brain Res 196:11–14

    Article  CAS  PubMed  Google Scholar 

  • Robinson TE, Berridge KC (2001) Incentive-sensitization and addiction. Addiction 96:103–114

    Article  CAS  PubMed  Google Scholar 

  • Rothwell PE, Gewirtz JC, Thomas MJ (2010) Episodic withdrawal promotes psychomotor sensitization to morphine. Neuropsychopharmacology 35:2579–2589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothwell PE, Thomas MJ, Gewirtz JC (2012) Protracted manifestations of acute dependence after a single morphine exposure. Psychopharmacology 219:991–998

    Article  CAS  PubMed  Google Scholar 

  • Russell SE, Puttick DJ, Sawyer AM et al (2016) Nucleus accumbens AMPA receptors are necessary for morphine-withdrawal-induced negative-affective states in rats. J Neurosci 36:5748–5762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulteis G, Heyser CJ, Koob GF (1997) Opiate withdrawal signs precipitated by naloxone following a single exposure to morphine: potentiation with a second morphine exposure. Psychopharmacology 129:56–65

    Article  CAS  PubMed  Google Scholar 

  • Schulteis G, Ahmed SH, Morse AC et al (2000) Conditioning and opiate withdrawal. Nature 405:1013–1014

    Article  CAS  PubMed  Google Scholar 

  • Zhang G-F, Ren Y-P, Sheng L-X et al (2008) Dysfunction of the hypothalamic–pituitary–adrenal axis in opioid dependent subjects: effects of acute and protracted abstinence. Am J Drug Alcohol Abuse 34:760–768

    Article  PubMed  Google Scholar 

  • Schultz W, Apicella P, Ljungberg T (1993) Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J Neurosci 13:900–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seno FZ, Sgobbi RF, Nobre MJ (2022) Contributions of the GABAergic system of the prelimbic cortex and basolateral amygdala to morphine withdrawal-induced contextual fear. Physiol Behav 254

  • Shaham Y, Stewart J (1995) Stress reinstates heroin-seeking in drug-free animals: an effect mimicking heroin, not withdrawal. Psychopharmacology 119:334–341

    Article  CAS  PubMed  Google Scholar 

  • Shaham Y, Rajabi H, Stewart J (1996) Relapse to heroin-seeking in rats under opioid maintenance: the effects of stress, heroin priming, and withdrawal. J Neurosci 16:1957–1963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma SK, Klee WA, Nirenberg M (1975) Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance. Proc Natl Acad Sci U S A 72:3092–3096

  • Shaw-Lutchman TZ, Barrot M, Wallace T et al (2002) Regional and cellular mapping of cAMP response element-mediated transcription during naltrexone-precipitated morphine withdrawal. J Neurosci 22:3663–3672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha R (2009) Modeling stress and drug craving in the laboratory: implications for addiction treatment development. Addict Biol 14:84–98

    Article  PubMed  Google Scholar 

  • Sinha R, Shaham Y, Heilig M (2011) Translational and reverse translational research on the role of stress in drug craving and relapse. Psychopharmacology 218:69–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skelton KH, Oren D, Gutman DA et al (2007) The CRF1 receptor antagonist, R121919, attenuates the severity of precipitated morphine withdrawal. Eur J Pharmacol 571:17–24

    Article  CAS  PubMed  Google Scholar 

  • Smethells JR, Greer A, Dougen B, Carroll ME (2020) Effects of voluntary exercise and sex on multiply-triggered heroin reinstatement in male and female rats. Psychopharmacology 237:453–463

    Article  CAS  PubMed  Google Scholar 

  • Solecki WB, Kus N, Gralec K et al (2019) Noradrenergic and corticosteroid receptors regulate somatic and motivational symptoms of morphine withdrawal. Behav Brain Res 360:146–157

    Article  CAS  PubMed  Google Scholar 

  • Solomon RL, Corbit JD (1974) An opponent-process theory of motivation. I. Temporal Dynamics of Affect Psychol Rev 81:119–145

    CAS  PubMed  Google Scholar 

  • Song Y, Meng Q-X, Wu K et al (2020) Disinhibition of PVN-projecting GABAergic neurons in AV region in BNST participates in visceral hypersensitivity in rats. Psychoneuroendocrinology 117:104690

    Article  CAS  PubMed  Google Scholar 

  • Song J, Shao D, Guo X, Zhao Y, Cui D, Ma Q, ... & Zheng P (2019) Crucial role of feedback signals from prelimbic cortex to basolateral amygdala in the retrieval of morphine withdrawal memory. Sci Adv 5(2):eaat3210

  • Stein C (2013) Opioid receptors on peripheral sensory neurons. Madame Curie Bioscience Database Available from: https://www.ncbi.nlm.nih.gov/books/NBK6242/.

  • Stimmel B, Kreek MJ (2000) Neurobiology of addictive behaviors and its relationship to methadone maintenance. Mt Sinai J Med 67:375–380

    CAS  PubMed  Google Scholar 

  • Stinus L, Le Moal M, Koob GF (1990) Nucleus accumbens and amygdala are possible substrates for the aversive stimulus effects of opiate withdrawal. Neuroscience 37:767–773

    Article  CAS  PubMed  Google Scholar 

  • Stinus L, Cador M, Zorrilla EP, Koob GF (2005) Buprenorphine and a CRF1 antagonist block the acquisition of opiate withdrawal-induced conditioned place aversion in rats. Neuropsychopharmacology 30:90–98

    Article  CAS  PubMed  Google Scholar 

  • Stornetta RL, Norton FE, Guyenet PG (1993) Autonomic areas of rat brain exhibit increased Fos-like immunoreactivity during opiate withdrawal in rats. Brain Res 624:19–28

    Article  CAS  PubMed  Google Scholar 

  • Stumbo SP, Yarborough BJH, McCarty D, Weisner C, Green CA (2017) Patient-reported pathways to opioid use disorders and pain-related barriers to treatment engagement. J Subst Abuse Treat 73:47–54

    Article  PubMed  Google Scholar 

  • Summers PJ, Hellman JL, MacLean MR et al (2018) Negative experiences of pain and withdrawal create barriers to abscess care for people who inject heroin. A mixed methods analysis. Drug Alcohol Depend 190:200–208

    Article  PubMed  Google Scholar 

  • Swain Y, Muelken P, Skansberg A et al (2020) Higher anhedonia during withdrawal from initial opioid exposure is protective against subsequent opioid self-administration in rats. Psychopharmacology 237:2279–2291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor JR, Punch LJ, Elsworth JD (1998) A comparison of the effects of clonidine and CNQX infusion into the locus coeruleus and the amygdala on naloxone-precipitated opiate withdrawal in the rat. Psychopharmacology 138:133–142

    Article  CAS  PubMed  Google Scholar 

  • Tennant F, Shannon JA, Nork JG et al (1991) Abnormal adrenal gland metabolism in opioid addicts: implications for clinical treatment. J Psychoactive Drugs 23:135–149

    Article  CAS  PubMed  Google Scholar 

  • van Vulpen EH, Verwer RW (1989) Organization of projections from the mediodorsal nucleus of the thalamus to the basolateral complex of the amygdala in the rat. Brain Res 500:389–394

    Article  PubMed  Google Scholar 

  • Vanderschuren LJ, Tjon GH, Nestby P et al (1997) Morphine-induced long-term sensitization to the locomotor effects of morphine and amphetamine depends on the temporal pattern of the pretreatment regimen. Psychopharmacology 131:115–122

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Dong Y, Doyon WM, Dani JA (2012) Withdrawal from chronic nicotine exposure alters dopamine signaling dynamics in the nucleus accumbens. Biol Psychiatry 71:184–191

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Wienecke CFR, Nachtrab G, Chen X (2016) A thalamic input to the nucleus accumbens mediates opiate dependence. Nature 530:219–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vargas-Perez H, Ting-A-Kee R, van der Kooy D (2009) Different neural systems mediate morphine reward and its spontaneous withdrawal aversion. Eur J Neurosci 29:2029–2034

    Article  PubMed  Google Scholar 

  • Veinante P, Stoeckel M-E, Lasbennes F, Freund-Mercier M-J (2003) c-Fos and peptide immunoreactivities in the central extended amygdala of morphine-dependent rats after naloxone-precipitated withdrawal. Eur J Neurosci 18:1295–1305

    Article  PubMed  Google Scholar 

  • Venniro M, Zhang M, Shaham Y, Caprioli D (2017) Incubation of methamphetamine but not heroin craving after voluntary abstinence in male and female rats. Neuropsychopharmacology 42(5):1126–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venniro M, Russell TI, Zhang M, Shaham Y (2019) Operant social reward decreases incubation of heroin craving in male and female rats. Biol Psychiatry 86(11):848–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vertes RP, Linley SB, Hoover WB (2015) Limbic circuitry of the midline thalamus. Neurosci Biobehav Rev 54:89–107

    Article  PubMed  PubMed Central  Google Scholar 

  • Vos T et al (2017) Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390(10100):1211–1259

    Article  Google Scholar 

  • Walters CL, Aston-Jones G, Druhan JP (2000) Expression of fos-related antigens in the nucleus accumbens during opiate withdrawal and their attenuation by a D2 dopamine receptor agonist. Neuropsychopharmacology 23:307–315

    Article  CAS  PubMed  Google Scholar 

  • Wanat M, Willuhn I, Clark J, Phillips P (2009) Phasic dopamine release in appetitive behaviors and drug addiction. Current Drug Abuse Reviewse 2:195–213

    Article  CAS  Google Scholar 

  • Wang L, Shen M, Jiang C, Ma L, Wang F (2016) Parvalbumin interneurons of central amygdala regulate the negative affective states and the expression of corticotrophin-releasing hormone during morphine withdrawal. Int J Neuropsychopharmacol 19(11)

  • Warlow SM, Berridge KC (2021) Incentive motivation:‘wanting’roles of central amygdala circuitry. Behav Brain Res 411:113376

  • Wassum KM, Izquierdo A (2015) The basolateral amygdala in reward learning and addiction. Neurosci Biobehav Rev 57:271–283

    Article  PubMed  PubMed Central  Google Scholar 

  • Wassum KM, Greenfield VY, Linker KE et al (2016) Inflated reward value in early opiate withdrawal. Addict Biol 21:221–233

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Nakagawa T, Yamamoto R et al (2002a) Involvement of glutamate receptors within the central nucleus of the amygdala in naloxone-precipitated morphine withdrawal-induced conditioned place aversion in rats. Jpn J Pharmacol 88:399–406

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Yamamoto R, Maeda A et al (2002b) Effects of excitotoxic lesions of the central or basolateral nucleus of the amygdala on naloxone-precipitated withdrawal-induced conditioned place aversion in morphine-dependent rats. Brain Res 958:423–428

    Article  CAS  PubMed  Google Scholar 

  • Watson S, Mackin P (2006) HPA axis function in mood disorders. Psychiatry 5:166–170

    Article  Google Scholar 

  • Weiss RD, Potter JS, Griffin ML et al (2014) Reasons for opioid use among patients with dependence on prescription opioids: the role of chronic pain. J Subst Abuse Treat 47:140–145

    Article  PubMed  PubMed Central  Google Scholar 

  • Weiss F, Ciccocioppo R, Parsons LH, Katner S, Liu X, Zorrilla EP, Valdez GR, Ben-Shahar O, Angeletti S, Richter RR. (2001) Compulsive drug‐seeking behavior and relapse. Neuroadaptation, stress, and conditioning factors. Ann N Y Acad Sci 937(1):1–26

  • Weller KL, Smith DA (1982) Afferent connections to the bed nucleus of the stria terminalis. Brain Res 232:255–270

    Article  CAS  PubMed  Google Scholar 

  • Wikler A (1948) Recent progress in research on the neurophysiologic basis of morphine addiction. Am J Psychiatry 105:329–338

    Article  CAS  PubMed  Google Scholar 

  • Williams JT, Christie MJ, Manzoni O (2001) Cellular and synaptic adaptations mediating opioid dependence. Physiol Rev 81:299–343

    Article  CAS  PubMed  Google Scholar 

  • Williams AM, Reis DJ, Powell AS et al (2012) The effect of intermittent alcohol vapor or pulsatile heroin on somatic and negative affective indices during spontaneous withdrawal in Wistar rats. Psychopharmacology 223:75–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wills KL, Petrie GN, Millett G et al (2016) Double dissociation of monoacylglycerol lipase inhibition and CB1 antagonism in the central amygdala, basolateral amygdala, and the interoceptive insular cortex on the affective properties of acute naloxone-precipitated morphine withdrawal in rats. Neuropsychopharmacology 41:1865–1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wills KL, DeVuono MV, Limebeer CL et al (2017) CB1 receptor antagonism in the bed nucleus of the stria terminalis interferes with affective opioid withdrawal in rats. Behav Neurosci 131:304–311

    Article  CAS  PubMed  Google Scholar 

  • Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483–494

    Article  CAS  PubMed  Google Scholar 

  • Witkin JM, Tzavara ET, Nomikos GG (2005) A role for cannabinoid CB1 receptors in mood and anxiety disorders. Behav Pharmacol 16:315–331

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Li YH, Tan BP et al (2012) Inhibition of the acquisition of conditioned place aversion by dopaminergic lesions of the central nucleus of the amygdala in morphine-treated rats. Physiol Res 61:437–442

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the NIH grants R15 AA027915 (AKR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna K. Radke.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monroe, S.C., Radke, A.K. Opioid withdrawal: role in addiction and neural mechanisms. Psychopharmacology 240, 1417–1433 (2023). https://doi.org/10.1007/s00213-023-06370-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-023-06370-2

Keywords

Navigation