Skip to main content

Advertisement

Log in

Melatonin alleviates PTSD-like behaviors and restores serum GABA and cortisol levels in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Melatonin is an endogenous hormone which modulates sleep-wake cycles. Previous studies have found a close correlation between melatonin and post-traumatic stress disorder (PTSD), a trauma- and stress-related psychiatric disorder with symptoms of sleep disturbance. However, it is still unclear if melatonin can have a therapeutic effect on PTSD.

Objective

This study aimed to investigate the effects of melatonin on foot shocks induced PTSD-like behaviors and abnormal neuroendocrine levels in mice.

Results

As compared to no-shock controls, PTSD-like mice spent significantly more time freezing and displayed less rearing in a contextual fear test, spent significantly less time in and had fewer entries into open arms in an elevated maze test, and spent significantly less time in and had fewer entries into a light box in a light-dark transition task. In addition, serum GABA and cortisol levels were both found to be significantly decreased, whereas epinephrine levels were significantly increased in the PTSD-like mice. Our results showed that intraperitoneal injections of melatonin (2 mM, but not 0.2 nor 20 mM, 0.1 ml/day for two consecutive weeks) alleviated PTSD-like behaviors and restored serum GABA and cortisol levels. Further, it was found that melatonin receptor 1/2 antagonist luzindole significantly blocked the beneficial effects of melatonin for PTSD-like behaviors and serum GABA and cortisol levels, whereas melatonin receptor 2 antagonist 4-P-PDOT slightly blocked these effects.

Conclusions

These results indicate that melatonin has a potential therapeutic effect on PTSD-like symptoms in mice, and melatonin receptor 1 mediated the effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acuna-Castroviejo D, Escames G, Venegas C, Diaz-Casado ME, Lima-Cabello E, Lopez LC, Rosales-Corral S, Tan DX, Reiter RJ (2014) Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci 71:2997–3025

    Article  CAS  Google Scholar 

  • Agorastos A, Linthorst AC (2016) Potential pleiotropic beneficial effects of adjuvant melatonergic treatment in posttraumatic stress disorder. J Pineal Res 61:3–26

    Article  CAS  Google Scholar 

  • Averill LA, Purohit P, Averill CL, Boesl MA, Krystal JH, Abdallah CG (2017) Glutamate dysregulation and glutamatergic therapeutics for PTSD: Evidence from human studies. Neurosci Lett 649:147–155

    Article  CAS  Google Scholar 

  • Barrett P, Conway S, Morgan PJ (2003) Digging deep--structure-function relationships in the melatonin receptor family. J Pineal Res 35:221–230

    Article  CAS  Google Scholar 

  • Boscarino JA (1996) Posttraumatic stress disorder, exposure to combat, and lower plasma cortisol among Vietnam veterans: findings and clinical implications. Journal of Consult Clin Psychol 64:191–201

    Article  CAS  Google Scholar 

  • Breton-Provencher V, Sur M (2019) Active control of arousal by a locus coeruleus GABAergic circuit. Nature Neurosci 22:218–228

    Article  CAS  Google Scholar 

  • Brzezinski A (1997) Melatonin in humans. N Engl J Med 336:186–195

    Article  CAS  Google Scholar 

  • Cardinali DP, Srinivasan V, Brzezinski A, Brown GM (2012) Melatonin and its analogs in insomnia and depression. J Pineal Res 52:365–375

    Article  CAS  Google Scholar 

  • Chase JE, Gidal BE (1997) Melatonin: therapeutic use in sleep disorders. Ann Pharmacother 31:1218–1226

    Article  CAS  Google Scholar 

  • Cohen H, Zohar J, Carmi L (2020) Effects of agomelatine on behaviour, circadian expression of period 1 and period 2 clock genes and neuroplastic markers in the predator scent stress rat model of PTSD. World J Biol Psychiatry 21:255–273

    Article  Google Scholar 

  • Conti A, Conconi S, Hertens E, Skwarlo-Sonta K, Markowska M, Maestroni JM (2000) Evidence for melatonin synthesis in mouse and human bone marrow cells. J Pineal Res 28:193–202

    Article  CAS  Google Scholar 

  • Crawley J, Goodwin FK (1980) Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 13:167–170

    Article  CAS  Google Scholar 

  • Dahlhoff M, Siegmund A, Golub Y, Wolf E, Holsboer F, Wotjak CT (2010) AKT/GSK-3beta/beta-catenin signalling within hippocampus and amygdala reflects genetically determined differences in posttraumatic stress disorder like symptoms. Neuroscience 169:1216–1226

    Article  CAS  Google Scholar 

  • Daskalakis NP, Yehuda R, Diamond DM (2013) Animal models in translational studies of PTSD. Psychoneuroendocrinology 38:1895–1911

    Article  Google Scholar 

  • Deslauriers J, Toth M, Der-Avakian A, Risbrough VB (2018) Current status of animal models of posttraumatic stress disorder: behavioral and biological phenotypes, and future challenges in improving translation. Biol Psychiatry 83:895–907

    Article  Google Scholar 

  • Feklicheva I, Boks MP, de Kloet ER, Chipeeva N, Maslennikova E, Pashkov A, Korobova S, Komelkova M, Kuznetsova Y, Platkovski P, Mamonova M, Sidorenko O, Vasilenko T, Tseilikman O, Tseilikman V (2021) Biomarkers in PTSD-susceptible and resistant veterans with war experience of more than ten years ago: FOCUS ON cortisol, thyroid hormones, testosterone and GABA. J Psychiatric Res 148:258–263

    Article  Google Scholar 

  • Ghaeli P, Solduzian M, Vejdani S, Talasaz AH (2018) Comparison of the effects of melatonin and oxazepam on anxiety levels and sleep quality in patients with ST-segment-elevation myocardial infarction following primary percutaneous coronary intervention: a randomized clinical trial. Ann Pharmacother 52:949–955

    Article  CAS  Google Scholar 

  • Gong S, Miao YL, Jiao GZ, Sun MJ, Li H, Lin J, Luo MJ, Tan JH (2015) Dynamics and correlation of serum cortisol and corticosterone under different physiological or stressful conditions in mice. PloS one 10:e0117503

    Article  Google Scholar 

  • Grund T, Neumann ID (2018) Neuropeptide S induces acute anxiolysis by phospholipase C-dependent signaling within the medial amygdala. Neuropsychopharmacology 43:1156–1163

    Article  CAS  Google Scholar 

  • Harnett NG, Goodman AM, Knight DC (2020) PTSD-related neuroimaging abnormalities in brain function, structure, and biochemistry. Exp Neurol 330:113331

    Article  CAS  Google Scholar 

  • Huang F, Yang Z, Liu X, Li CQ (2014) Melatonin facilitates extinction, but not acquisition or expression, of conditional cued fear in rats. BMC Neurosci 15:86

    Article  Google Scholar 

  • Jin ZL, Liu JX, Liu X, Zhang LM, Ran YH, Zheng YY, Tang Y, Li YF, Xiong J (2016) Anxiolytic effects of GLYX-13 in animal models of posttraumatic stress disorder-like behavior. J Psychopharmacol 30:913–921

    Article  CAS  Google Scholar 

  • Jones BE (2020) Arousal and sleep circuits. Neuropsychopharmacology 45:6–20

    Article  CAS  Google Scholar 

  • Kao CY, He Z, Zannas AS, Hahn O, Kuhne C, Reichel JM, Binder EB, Wotjak CT, Khaitovich P, Turck CW (2016) Fluoxetine treatment prevents the inflammatory response in a mouse model of posttraumatic stress disorder. J Psychiatric Res 76:74–83

    Article  Google Scholar 

  • Kato K, Asai S, Murai I, Nagata T, Takahashi Y, Komuro S, Iwasaki A, Ishikawa K, Arakawa Y (2001) Melatonin's gastroprotective and antistress roles involve both central and peripheral effects. J Gastroenterol 36:91–95

    Article  CAS  Google Scholar 

  • Kim KS, Lee KW, Baek IS, Lim CM, Krishnan V, Lee JK, Nestler EJ, Han PL (2008) Adenylyl cyclase-5 activity in the nucleus accumbens regulates anxiety-related behavior. J Neurocytol 107:105–115

    CAS  Google Scholar 

  • Kopp C, Vogel E, Rettori MC, Delagrange P, Misslin R (1999) The effects of melatonin on the behavioural disturbances induced by chronic mild stress in C3H/He mice. Behav Pharmacol 10:73–83

    Article  CAS  Google Scholar 

  • Lemoine P, Garfinkel D, Laudon M, Nir T, Zisapel N (2011) Prolonged-release melatonin for insomnia – an open-label long-term study of efficacy, safety, and withdrawal. Ther Clin risk Manage 7:301–311

    CAS  Google Scholar 

  • Levine S, Treiman DM (1964) Differential plasma corticosterone response to stress in four inbred strains of mice. Endocrinology 75:142–144

    Article  CAS  Google Scholar 

  • Liguori C, Fernandes M, Cerroni R, Ludovisi R, Mercuri NB, Stefani A, Pierantozzi M (2022) Effects of melatonin prolonged-release on both sleep and motor symptoms in Parkinson’s disease: a preliminary evidence. Neurolog Sci

    Book  Google Scholar 

  • Lopatina OL, Malinovskaya NA, Komleva YK, Gorina YV, Shuvaev AN, Olovyannikova RY, Belozor OS, Belova OA, Higashida H, Salmina AB (2019) Excitation/inhibition imbalance and impaired neurogenesis in neurodevelopmental and neurodegenerative disorders. Rev Neurosci 30:807–820

    Article  CAS  Google Scholar 

  • Masood A, Huang Y, Hajjhussein H, Xiao L, Li H, Wang W, Hamza A, Zhan CG, O'Donnell JM (2009) Anxiolytic effects of phosphodiesterase-2 inhibitors associated with increased cGMP signaling. J Pharmacol Exp Ther 331:690–699

    Article  CAS  Google Scholar 

  • Meewisse ML, Reitsma JB, de Vries GJ, Gersons BP, Olff M (2007) Cortisol and post-traumatic stress disorder in adults: systematic review and meta-analysis. Br J Psychiatry 191:387–392

    Article  Google Scholar 

  • Messner M, Huether G, Lorf T, Ramadori G, Schworer H (2001) Presence of melatonin in the human hepatobiliary-gastrointestinal tract. Life Sci 69:543–551

    Article  CAS  Google Scholar 

  • Meyerhoff DJ, Mon A, Metzler T, Neylan TC (2014) Cortical gamma-aminobutyric acid and glutamate in posttraumatic stress disorder and their relationships to self-reported sleep quality. Sleep 37:893–900

    Article  Google Scholar 

  • Patel T, Kurdi MS (2015) A comparative study between oral melatonin and oral midazolam on preoperative anxiety, cognitive, and psychomotor functions. J Anaesthesiol, Clin Pharmacol 31:37–43

    Article  CAS  Google Scholar 

  • Paul MA, Love RJ, Jetly R, Richardson JD, Lanius RA, Miller JC, MacDonald M, Rhind SG (2019) Blunted nocturnal salivary melatonin secretion profiles in military-related posttraumatic stress disorder. Front Psychiatry 10:882

    Article  Google Scholar 

  • Pellow S, Chopin P, File SE, Briley M (1985) Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14:149–167

    Article  CAS  Google Scholar 

  • Pitman RK, Rasmusson AM, Koenen KC, Shin LM, Orr SP, Gilbertson MW, Milad MR, Liberzon I (2012) Biological studies of post-traumatic stress disorder. Nat Rev Neurosci 13:769–787

    Article  CAS  Google Scholar 

  • Prajapati SK, Singh N, Garabadu D, Krishnamurthy S (2020) A novel stress re-stress model: modification of re-stressor cue induces long-lasting post-traumatic stress disorder-like symptoms in rats. Int J Neurosci 130:941–952

    Article  CAS  Google Scholar 

  • Ross RJ, Ball WA, Sullivan KA, Caroff SN (1989) Sleep disturbance as the hallmark of posttraumatic stress disorder. Am J Psychiatry 146:697–707

    Article  CAS  Google Scholar 

  • Schaefer ML, Wong ST, Wozniak DF, Muglia LM, Liauw JA, Zhuo M, Nardi A, Hartman RE, Vogt SK, Luedke CE, Storm DR, Muglia LJ (2000) Altered stress-induced anxiety in adenylyl cyclase type VIII-deficient mice. J Neurosci 20:4809–4820

    Article  CAS  Google Scholar 

  • Schaffter N, Ledermann K, Pazhenkottil AP, Barth J, Schnyder U, Znoj H, Schmid JP, Meister-Langraf RE, von Kanel R, Princip M (2021) Serum cortisol as a predictor for posttraumatic stress disorder symptoms in post-myocardial infarction patients. J Affect Disord 292:687–694

    Article  CAS  Google Scholar 

  • Shalev A, Liberzon I, Marmar C (2017) Post-traumatic stress disorder. N Engl J Med 376:2459–2469

    Article  Google Scholar 

  • Shin LM, Rauch SL, Pitman RK (2006) Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Ann N Y Acad Sci 1071:67–79

    Article  Google Scholar 

  • Skorzewska A, Lehner M, Wislowska-Stanek A, Turzynska D, Sobolewska A, Krzascik P, Szyndler J, Maciejak P, Chmielewska N, Kolosowska K, Plaznik A (2020) Individual susceptibility or resistance to posttraumatic stress disorder-like behaviours. Behav Brain Sci 386:112591

    CAS  Google Scholar 

  • Sojka P, Stalnacke BM, Bjornstig U, Karlsson K (2006) One-year follow-up of patients with mild traumatic brain injury: occurrence of post-traumatic stress-related symptoms at follow-up and serum levels of cortisol, S-100B and neuron-specific enolase in acute phase. Brain Inj 20:613–620

    Article  Google Scholar 

  • Song Y, Zhou D, Wang X (2008) Increased serum cortisol and growth hormone levels in earthquake survivors with PTSD or subclinical PTSD. Psychoneuroendocrinology 33:1155–1159

    Article  CAS  Google Scholar 

  • Vaiva G, Boss V, Ducrocq F, Fontaine M, Devos P, Brunet A, Laffargue P, Goudemand M, Thomas P (2006) Relationship between posttrauma GABA plasma levels and PTSD at 1-year follow-up. Am J Psychiatry 163:1446–1448

    Article  Google Scholar 

  • van den Berg MP, Merkus P, Romeijn SG, Verhoef JC, Merkus FW (2004) Uptake of melatonin into the cerebrospinal fluid after nasal and intravenous delivery: studies in rats and comparison with a human study. Pharm Res 21:799–802

    Article  Google Scholar 

  • Vitte PA, Harthe C, Lestage P, Claustrat B, Bobillier P (1988) Plasma, cerebrospinal fluid, and brain distribution of 14C-melatonin in rat: a biochemical and autoradiographic study. J Pineal Res 5:437–453

    Article  CAS  Google Scholar 

  • von Gall C, Stehle JH, Weaver DR (2002) Mammalian melatonin receptors: molecular biology and signal transduction. Cell Tissue Res 309:151–162

    Article  Google Scholar 

  • Wade AG, Crawford G, Ford I, McConnachie A, Nir T, Laudon M, Zisapel N (2011) Prolonged release melatonin in the treatment of primary insomnia: evaluation of the age cut-off for short- and long-term response. Curr Med Res Opin 27:87–98

    Article  CAS  Google Scholar 

  • Wang Z, Zhu K, Chen L, Ou Yang L, Huang Y, Zhao Y (2015) Preventive effects of ginsenoside Rg1 on post-traumatic stress disorder (PTSD)-like behavior in male C57/B6 mice. Neurosci Lett 605:24–28

    Article  CAS  Google Scholar 

  • Yabuki Y, Takahata I, Matsuo K, Owada Y, Fukunaga K (2018) Ramelteon improves post-traumatic stress disorder-like behaviors exhibited by fatty acid-binding protein 3 null mice. Mol Neurobiol 55:3577–3591

    Article  CAS  Google Scholar 

  • Yamamoto S, Morinobu S, Fuchikami M, Kurata A, Kozuru T, Yamawaki S (2008) Effects of single prolonged stress and D-cycloserine on contextual fear extinction and hippocampal NMDA receptor expression in a rat model of PTSD. Neuropsychopharmacology 33:2108–2116

    Article  CAS  Google Scholar 

  • Yehuda R, Hoge CW, McFarlane AC, Vermetten E, Lanius RA, Nievergelt CM, Hobfoll SE, Koenen KC, Neylan TC, Hyman SE (2015) Post-traumatic stress disorder. Nat Rev Dis Primers 1:15057

    Article  Google Scholar 

  • Yu H, Watt H, Kesavan C, Johnson PJ, Wergedal JE, Mohan S (2012) Lasting consequences of traumatic events on behavioral and skeletal parameters in a mouse model for post-traumatic stress disorder (PTSD). PloS one 7:e42684

    Article  CAS  Google Scholar 

  • Zhang G, Chen L, Yang L, Hua X, Zhou B, Miao Z, Li J, Hu H, Namaka M, Kong J, Xu X (2015) Combined use of spatial restraint stress and middle cerebral artery occlusion is a novel model of post-stroke depression in mice. Sci Rep 5:16751

    Article  CAS  Google Scholar 

  • Zhou Q, Ding W, Qian Z, Jiang G, Sun C, Xu K (2020) Chronic unpredictable mild stress accelerates the growth of bladder cancer in a xenograft mouse model. Psychol Res Behav Manage 13:1289–1297

    Article  Google Scholar 

  • Zisapel N (2018) New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br J Pharmacol 175:3190–3199

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the scientific research funds of Wenzhou Science and Technology Bureau (Y2020244), Zhejiang Provincial Natural Science Foundation of China (LQ22H090008), Wenzhou Medical University (89421025), and National Innovation and Entrepreneurship Training Programs for College Students (202110343017).

Author information

Authors and Affiliations

Authors

Contributions

The study was designed by Qi Wang and Jingyuan Yang. Material preparation, experiment execution, data collection, and analysis were performed by Zixuan Xu, Wen Li, Yixin Sun, Wen Jin, and Li Yu. The first draft of the manuscript was written by Qi Wang and Jingyuan Yang. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jingyuan Yang or Qi Wang.

Ethics declarations

This research was approved by the Ethical Committees of Animal Experimentation of Wenzhou Medical University. All experimental protocols complied with the Guide for the Care and Use of Laboratory Animals of Wenzhou Medical University.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Li, W., Sun, Y. et al. Melatonin alleviates PTSD-like behaviors and restores serum GABA and cortisol levels in mice. Psychopharmacology 240, 259–269 (2023). https://doi.org/10.1007/s00213-023-06312-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-023-06312-y

Keywords

Navigation