Skip to main content
Log in

Psilocybin mitigates the cognitive deficits observed in a rat model of Fragile X syndrome

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Fragile X syndrome (FXS) is the most common form of inherited intellectual disability (ID) and the leading monogenic cause of autism spectrum disorder (ASD). Serotonergic neurotransmission has a key role in the modulation of neuronal activity during development, and therefore, it has been hypothesized to be involved in ASD and co-occurring conditions including FXS. As serotonin is involved in synaptic remodeling and maturation, serotonergic insufficiency during childhood may have a compounding effect on brain patterning in neurodevelopmental disorders, manifesting as behavioral and emotional symptoms. Thus, compounds that stimulate serotonergic signaling such as psilocybin may offer promise as effective early interventions for developmental disorders such as ASD and FXS.

Objectives

The aim of the present study was to test whether different protocols of psilocybin administration mitigate cognitive deficits displayed by the recently validated Fmr1-Δexon 8 rat model of ASD, which is also a model of FXS.

Results

Our results revealed that systemic and oral administration of psilocybin microdoses normalizes the aberrant cognitive performance displayed by adolescent Fmr1-Δexon 8 rats in the short-term version of the novel object recognition test—a measure of exploratory behavior, perception, and recognition.

Conclusions

These data support the hypothesis that serotonin-modulating drugs such as psilocybin may be useful to ameliorate ASD-related cognitive deficits. Overall, this study provides evidence of the beneficial effects of different schedules of psilocybin treatment in mitigating the short-term cognitive deficit observed in a rat model of FXS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bagni C, Zukin RS (2019) A synaptic perspective of Fragile X syndrome and autism spectrum disorders. Neuron 101:1070–1088

    Article  CAS  Google Scholar 

  • Bardoni B, Davidovic L, Bensaid M, Khandjian EW (2006) The Fragile X syndrome: exploring its molecular basis and seeking a treatment. Expert Rev Mol Med 8:1–16

    Article  Google Scholar 

  • Belouin SJ, Henningfield JE (2018) Psychedelics: where we are now, why we got here, what we must do. Neuropharmacology 142:7–19

    Article  CAS  Google Scholar 

  • Boccuto L, Chen CF, Pittman AR, Skinner CD, McCartney HJ, Jones K, Bochner BR, Stevenson RE, Schwartz CE (2013) Decreased tryptophan metabolism in patients with autism spectrum disorders. Mol Autism 4:16

    Article  CAS  Google Scholar 

  • Borsoi M, Manduca A, Bara A, Lassalle O, Pelissier-Alicot AL, Manzoni OJ (2019) Sex differences in the behavioral and synaptic consequences of a single in vivo exposure to the synthetic cannabimimetic WIN55,212–2 at puberty and adulthood. Front Behav Neurosci 13:23

    Article  CAS  Google Scholar 

  • Buchborn T, Schroder H, Hollt V, Grecksch G (2014) Repeated lysergic acid diethylamide in an animal model of depression: normalisation of learning behaviour and hippocampal serotonin 5-HT2 signalling. J Psychopharmacol 28:545–552

    Article  Google Scholar 

  • Calder AE, Hasler G (2022) Towards an understanding of psychedelic-induced neuroplasticity. Neuropsychopharmacology 48(1):104–112

    Article  Google Scholar 

  • Cameron LP, Benson CJ, Dunlap LE, Olson DE (2018) Effects of N, N-dimethyltryptamine on rat behaviors relevant to anxiety and depression. ACS Chem Neurosci 9:1582–1590

    Article  CAS  Google Scholar 

  • Chugani DC (2002) Role of altered brain serotonin mechanisms in autism. Mol Psychiatry 7(Suppl 2):S16–S17

    Article  Google Scholar 

  • Chugani DC (2004) Serotonin in autism and pediatric epilepsies. Ment Retard Dev Disabil Res Rev 10:112–116

    Article  Google Scholar 

  • Chugani DC, Muzik O, Chakraborty P, Mangner T, Chugani HT (1998) Human brain serotonin synthesis capacity measured in vivo with alpha-[C-11]methyl-L-tryptophan. Synapse 28:33–43

    Article  CAS  Google Scholar 

  • Costa L, Sardone LM, Bonaccorso CM, D’Antoni S, Spatuzza M, Gulisano W, Tropea MR, Puzzo D, Leopoldo M, Lacivita E, Catania MV, Ciranna L (2018) Activation of serotonin 5-HT7 receptors modulates hippocampal synaptic plasticity by stimulation of adenylate cyclases and rescues learning and behavior in a mouse model of Fragile X syndrome. Front Mol Neurosci 11:353

    Article  CAS  Google Scholar 

  • Costa L, Sardone LM, Lacivita E, Leopoldo M, Ciranna L (2015) Novel agonists for serotonin 5-HT7 receptors reverse metabotropic glutamate receptor-mediated long-term depression in the hippocampus of wild-type and Fmr1 KO mice, a model of Fragile X syndrome. Front Behav Neurosci 9:65

    Article  Google Scholar 

  • Crispino M, Volpicelli F, Perrone-Capano C (2020) Role of the serotonin receptor 7 in brain plasticity: from development to disease. Int J Mol Sci 21(2):505

    Article  CAS  Google Scholar 

  • Darnell JC, Klann E (2013) The translation of translational control by FMRP: therapeutic targets for FXS. Nat Neurosci 16:1530–1536

    Article  CAS  Google Scholar 

  • Davis AK, Barrett FS, May DG, Cosimano MP, Sepeda ND, Johnson MW, Finan PH, Griffiths RR (2021) Effects of psilocybin-assisted therapy on major depressive disorder: a randomized clinical trial. JAMA Psychiat 78:481–489

    Article  Google Scholar 

  • Davis JK, Broadie K (2017) Multifarious functions of the Fragile X mental retardation protein. Trends Genet 33:703–714

    Article  CAS  Google Scholar 

  • De Gregorio D, Aguilar-Valles A, Preller KH, Heifets BD, Hibicke M, Mitchell J, Gobbi G (2021) Hallucinogens in mental health: preclinical and clinical studies on LSD, psilocybin, MDMA, and ketamine. J Neurosci 41:891–900

    Article  Google Scholar 

  • Ding Q, Sethna F, Wang H (2014) Behavioral analysis of male and female Fmr1 knockout mice on C57BL/6 background. Behav Brain Res 271:72–78

    Article  CAS  Google Scholar 

  • Fadiman J (2011) The psychedelic explorer’s guide: Safe, therapeutic, and sacred journeys. Inner Traditions Bear and Company

  • Forstmann M, Yudkin DA, Prosser AMB, Heller SM, Crockett MJ (2020) Transformative experience and social connectedness mediate the mood-enhancing effects of psychedelic use in naturalistic settings. Proc Natl Acad Sci USA 117:2338–2346

    Article  CAS  Google Scholar 

  • Gill H, Gill B, Chen-Li D, El-Halabi S, Rodrigues NB, Cha DS, Lipsitz O, Lee Y, Rosenblat JD, Majeed A, Mansur RB, Nasri F, Ho R, McIntyre RS (2020) The emerging role of psilocybin and MDMA in the treatment of mental illness. Expert Rev Neurother 20:1263–1273

    Article  CAS  Google Scholar 

  • Golden CEM, Breen MS, Koro L, Sonar S, Niblo K, Browne A, Burlant N, Di Marino D, De Rubeis S, Baxter MG, Buxbaum JD, Harony-Nicolas H (2019) Deletion of the KH1 domain of Fmr1 leads to transcriptional alterations and attentional deficits in rats. Cereb Cortex 29:2228–2244

    Article  Google Scholar 

  • Hagerman RJ, Berry-Kravis E, Hazlett HC, Bailey DB Jr, Moine H, Kooy RF, Tassone F, Gantois I, Sonenberg N, Mandel JL, Hagerman PJ (2017) Fragile X syndrome. Nat Rev Dis Primers 3:17065

    Article  Google Scholar 

  • Hagerman RJ, Berry-Kravis E, Kaufmann WE, Ono MY, Tartaglia N, Lachiewicz A, Kronk R, Delahunty C, Hessl D, Visootsak J, Picker J, Gane L, Tranfaglia M (2009) Advances in the treatment of Fragile X syndrome. Pediatrics 123:378–390

    Article  Google Scholar 

  • Hagerman RJ, Hagerman P (2016) Fragile X-associated tremor/ataxia syndrome - features, mechanisms and management. Nat Rev Neurol 12:403–412

    Article  CAS  Google Scholar 

  • Hanson AC, Hagerman RJ (2014) Serotonin dysregulation in Fragile X syndrome: implications for treatment. Intractable Rare Dis Res 3:110–117

    Article  Google Scholar 

  • Harris SW, Hessl D, Goodlin-Jones B, Ferranti J, Bacalman S, Barbato I, Tassone F, Hagerman PJ, Herman H, Hagerman RJ (2008) Autism profiles of males with Fragile X syndrome. Am J Ment Retard 113:427–438

    Article  Google Scholar 

  • Hasler F, Grimberg U, Benz MA, Huber T, Vollenweider FX (2004) Acute psychological and physiological effects of psilocybin in healthy humans: a double-blind, placebo-controlled dose-effect study. Psychopharmacology 172:145–156

    Article  CAS  Google Scholar 

  • Hernandez RN, Feinberg RL, Vaurio R, Passanante NM, Thompson RE, Kaufmann WE (2009) Autism spectrum disorder in Fragile X syndrome: a longitudinal evaluation. Am J Med Genet A 149A:1125–1137

    Article  Google Scholar 

  • Hessl D, Tassone F, Cordeiro L, Koldewyn K, McCormick C, Green C, Wegelin J, Yuhas J, Hagerman RJ (2008) Brief report: aggression and stereotypic behavior in males with Fragile X syndrome–moderating secondary genes in a “single gene” disorder. J Autism Dev Disord 38:184–189

    Article  Google Scholar 

  • Hibicke M, Landry AN, Kramer HM, Talman ZK, Nichols CD (2020) Psychedelics, but not ketamine, produce persistent antidepressant-like effects in a rodent experimental system for the study of depression. ACS Chem Neurosci 11:864–871

    Article  CAS  Google Scholar 

  • Higgins GA, Carroll NK, Brown M, MacMillan C, Silenieks LB, Thevarkunnel S, Izhakova J, Magomedova L, DeLannoy I, Sellers EM (2021) Low doses of psilocybin and ketamine enhance motivation and attention in poor performing rats: evidence for an antidepressant property. Front Pharmacol 12:640241

    Article  CAS  Google Scholar 

  • Hollocks MJ, Lerh JW, Magiati I, Meiser-Stedman R, Brugha TS (2019) Anxiety and depression in adults with autism spectrum disorder: a systematic review and meta-analysis. Psychol Med 49:559–572

    Article  Google Scholar 

  • Horsley RR, Palenicek T, Kolin J, Vales K (2018) Psilocin and ketamine microdosing: effects of subchronic intermittent microdoses in the elevated plus-maze in male Wistar rats. Behav Pharmacol 29:530–536

    Article  CAS  Google Scholar 

  • Kaertner LS, Steinborn MB, Kettner H, Spriggs MJ, Roseman L, Buchborn T, Balaet M, Timmermann C, Erritzoe D, Carhart-Harris RL (2021) Positive expectations predict improved mental-health outcomes linked to psychedelic microdosing. Sci Rep 11:1941

    Article  CAS  Google Scholar 

  • Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8:e1000412

    Article  Google Scholar 

  • King MK, Jope RS (2013) Lithium treatment alleviates impaired cognition in a mouse model of Fragile X syndrome. Genes Brain Behav 12:723–731

    CAS  Google Scholar 

  • Kuypers KP, Ng L, Erritzoe D, Knudsen GM, Nichols CD, Nichols DE, Pani L, Soula A, Nutt D (2019) Microdosing psychedelics: more questions than answers? An overview and suggestions for future research. J Psychopharmacol 33:1039–1057

    Article  CAS  Google Scholar 

  • Kuypers KPC (2020) The therapeutic potential of microdosing psychedelics in depression. Ther Adv Psychopharmacol 10:2045125320950567

    Article  Google Scholar 

  • Lai MC, Lombardo MV, Baron-Cohen S (2014) Autism. Lancet 383:896–910

    Article  Google Scholar 

  • Launay JM, Ferrari P, Haimart M, Bursztejn C, Tabuteau F, Braconnier A, Pasques-Bondoux D, Luong C, Dreux C (1988) Serotonin metabolism and other biochemical parameters in infantile autism. A controlled study of 22 autistic children. Neuropsychobiology 20:1–11

    Article  CAS  Google Scholar 

  • Lea T, Amada N, Jungaberle H, Schecke H, Klein M (2020) Microdosing psychedelics: motivations, subjective effects and harm reduction. Int J Drug Policy 75:102600

    Article  Google Scholar 

  • Lesch KP, Waider J (2012) Serotonin in the modulation of neural plasticity and networks: implications for neurodevelopmental disorders. Neuron 76:175–191

    Article  CAS  Google Scholar 

  • Lowe H, Toyang N, Steele B, Valentine H, Grant J, Ali A, Ngwa W, Gordon L (2021) The therapeutic potential of psilocybin. Molecules 26(10):2948

    Article  CAS  Google Scholar 

  • Manduca A, Bara A, Larrieu T, Lassalle O, Joffre C, Laye S, Manzoni OJ (2017) Amplification of mGlu5-endocannabinoid signaling rescues behavioral and synaptic deficits in a mouse model of adolescent and adult dietary polyunsaturated fatty acid imbalance. J Neurosci 37:6851–6868

    Article  CAS  Google Scholar 

  • Markopoulos A, Inserra A, De Gregorio D, Gobbi G (2021) Evaluating the potential use of serotonergic psychedelics in autism spectrum disorder. Front Pharmacol 12:749068

    Article  CAS  Google Scholar 

  • Martin DA, Marona-Lewicka D, Nichols DE, Nichols CD (2014) Chronic LSD alters gene expression profiles in the mPFC relevant to schizophrenia. Neuropharmacology 83:1–8

    Article  CAS  Google Scholar 

  • Melancia F, Schiavi S, Servadio M, Cartocci V, Campolongo P, Palmery M, Pallottini V, Trezza V (2018) Sex-specific autistic endophenotypes induced by prenatal exposure to valproic acid involve anandamide signalling. Br J Pharmacol 175:3699–3712

    Article  CAS  Google Scholar 

  • Melancia F, Trezza V (2018) Modelling Fragile X syndrome in the laboratory setting: a behavioral perspective. Behav Brain Res 350:149–163

    Article  CAS  Google Scholar 

  • Mollinedo-Gajate I, Song C, Sintes-Rodriguez M, Whela T, Soula A, Selimbeyoglu A, Hurley S, Knöpfel T (2020) Psilocybin rescues sociability deficits in an animal model of autism. bioRxiv

  • Muller CL, Anacker AMJ, Veenstra-VanderWeele J (2016) The serotonin system in autism spectrum disorder: from biomarker to animal models. Neuroscience 321:24–41

    Article  CAS  Google Scholar 

  • Nutt D, Erritzoe D, Carhart-Harris R (2020) Psychedelic psychiatry’s brave new world. Cell 181:24–28

    Article  CAS  Google Scholar 

  • Ona G, Bouso JC (2020) Potential safety, benefits, and influence of the placebo effect in microdosing psychedelic drugs: a systematic review. Neurosci Biobehav Rev 119:194–203

    Article  CAS  Google Scholar 

  • Passie T, Halpern JH, Stichtenoth DO, Emrich HM, Hintzen A (2008) The pharmacology of lysergic acid diethylamide: a review. CNS Neurosci Ther 14:295–314

    Article  CAS  Google Scholar 

  • Passie T, Seifert J, Schneider U, Emrich HM (2002) The pharmacology of psilocybin. Addict Biol 7:357–364

    Article  CAS  Google Scholar 

  • Pokorny T, Preller KH, Kometer M, Dziobek I, Vollenweider FX (2017) Effect of psilocybin on empathy and moral decision-making. Int J Neuropsychopharmacol 20:747–757

    Article  Google Scholar 

  • Preller KH, Pokorny T, Hock A, Kraehenmann R, Stampfli P, Seifritz E, Scheidegger M, Vollenweider FX (2016) Effects of serotonin 2A/1A receptor stimulation on social exclusion processing. Proc Natl Acad Sci USA 113:5119–5124

    Article  CAS  Google Scholar 

  • Rambousek L, Palenicek T, Vales K, Stuchlik A (2014) The effect of psilocin on memory acquisition, retrieval, and consolidation in the rat. Front Behav Neurosci 8:180

    Article  Google Scholar 

  • Ross S, Bossis A, Guss J, Agin-Liebes G, Malone T, Cohen B, Mennenga SE, Belser A, Kalliontzi K, Babb J, Su Z, Corby P, Schmidt BL (2016) Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: a randomized controlled trial. J Psychopharmacol 30:1165–1180

    Article  CAS  Google Scholar 

  • Rucker JJH, Iliff J, Nutt DJ (2018) Psychiatry & the psychedelic drugs. Past, present & future. Neuropharmacology 142:200–218

    Article  CAS  Google Scholar 

  • Sakashita Y, Abe K, Katagiri N, Kambe T, Saitoh T, Utsunomiya I, Horiguchi Y, Taguchi K (2015) Effect of psilocin on extracellular dopamine and serotonin levels in the mesoaccumbens and mesocortical pathway in awake rats. Biol Pharm Bull 38:134–138

    Article  CAS  Google Scholar 

  • Schiavi S, Iezzi D, Manduca A, Leone S, Melancia F, Carbone C, Petrella M, Mannaioni G, Masi A, Trezza V (2019) Reward-related behavioral, neurochemical and electrophysiological changes in a rat model of autism based on prenatal exposure to valproic acid. Front Cell Neurosci 13:479. https://doi.org/10.3389/fncel.2019.00479

  • Schiavi S, Carbone E, Melancia F, Buzzelli V, Manduca A, Campolongo P, Pallottini V, Trezza V (2022a) Perinatal supplementation with omega-3 fatty acids corrects the aberrant social and cognitive traits observed in a genetic model of autism based on FMR1 deletion in rats. Nutr Neurosci 25:898–911

  • Schiavi S, Manduca A, Carbone E, Buzzelli V, Rava A, Feo A, Ascone F, Morena M, Campolongo P, Hill MN, Trezza V. (2022b) Anandamide and 2-arachidonoylglycerol differentially modulate autistic-like traits in a genetic model of autism based on FMR1 deletion in rats. Neuropsychopharmacology. https://doi.org/10.1038/s41386-022-01454-7

  • Schill Y, Bijata M, Kopach O, Cherkas V, Abdel-Galil D, Bohm K, Schwab MH, Matsuda M, Compan V, Basu S, Bijata K, Wlodarczyk J, Bard L, Cole N, Dityatev A, Zeug A, Rusakov DA, Ponimaskin E (2020) Serotonin 5-HT4 receptor boosts functional maturation of dendritic spines via RhoA-dependent control of F-actin. Commun Biol 3:76

    Article  CAS  Google Scholar 

  • Servadio M, Manduca A, Melancia F, Leboffe L, Schiavi S, Campolongo P, Palmery M, Ascenzi P, di Masi A, Trezza V (2018) Impaired repair of DNA damage is associated with autistic-like traits in rats prenatally exposed to valproic acid. Eur Neuropsychopharmacol 28:85–96

    Article  CAS  Google Scholar 

  • Shao LX, Liao C, Gregg I, Davoudian PA, Savalia NK, Delagarza K, Kwan AC (2021) Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron 109:2535-2544 e4

    Article  CAS  Google Scholar 

  • Smigielski L, Scheidegger M, Kometer M, Vollenweider FX (2019) Psilocybin-assisted mindfulness training modulates self-consciousness and brain default mode network connectivity with lasting effects. Neuroimage 196:207–215

    Article  CAS  Google Scholar 

  • Speranza L, Labus J, Volpicelli F, Guseva D, Lacivita E, Leopoldo M, Bellenchi GC, di Porzio U, Bijata M, Perrone-Capano C, Ponimaskin E (2017) Serotonin 5-HT7 receptor increases the density of dendritic spines and facilitates synaptogenesis in forebrain neurons. J Neurochem 141:647–661

    Article  CAS  Google Scholar 

  • Takumi T, Tamada K, Hatanaka F, Nakai N, Bolton PF (2020) Behavioral neuroscience of autism. Neurosci Biobehav Rev 110:60–76

    Article  Google Scholar 

  • Tartaglione AM, Schiavi S, Calamandrei G, Trezza V (2019) Prenatal valproate in rodents as a tool to understand the neural underpinnings of social dysfunctions in autism spectrum disorder. Neuropharmacology 159:107477

    Article  CAS  Google Scholar 

  • Tian Y, Yang C, Shang S, Cai Y, Deng X, Zhang J, Shao F, Zhu D, Liu Y, Chen G, Liang J, Sun Q, Qiu Z, Zhang C (2017) Loss of FMRP impaired hippocampal long-term plasticity and spatial learning in rats. Front Mol Neurosci 10:269

    Article  Google Scholar 

  • Till SM, Asiminas A, Jackson AD, Katsanevaki D, Barnes SA, Osterweil EK, Bear MF, Chattarji S, Wood ER, Wyllie DJ, Kind PC (2015) Conserved hippocampal cellular pathophysiology but distinct behavioural deficits in a new rat model of FXS. Hum Mol Genet 24:5977–5984

    Article  CAS  Google Scholar 

  • Tyls F, Palenicek T, Kaderabek L, Lipski M, Kubesova A, Horacek J (2016) Sex differences and serotonergic mechanisms in the behavioural effects of psilocin. Behav Pharmacol 27:309–320

    Article  CAS  Google Scholar 

  • Ventura R, Pascucci T, Catania MV, Musumeci SA, Puglisi-Allegra S (2004) Object recognition impairment in Fmr1 knockout mice is reversed by amphetamine: involvement of dopamine in the medial prefrontal cortex. Behav Pharmacol 15:433–442

    Article  CAS  Google Scholar 

  • Vollenweider FX, Csomor PA, Knappe B, Geyer MA, Quednow BB (2007) The effects of the preferential 5-HT2A agonist psilocybin on prepulse inhibition of startle in healthy human volunteers depend on interstimulus interval. Neuropsychopharmacology 32:1876–87

    Article  CAS  Google Scholar 

  • Vollenweider FX, Kometer M (2010) The neurobiology of psychedelic drugs: implications for the treatment of mood disorders. Nat Rev Neurosci 11:642–651

    Article  CAS  Google Scholar 

  • White SW, Simmons GL, Gotham KO, Conner CM, Smith IC, Beck KB, Mazefsky CA (2018) Psychosocial treatments targeting anxiety and depression in adolescents and adults on the autism spectrum: review of the latest research and recommended future directions. Curr Psychiatry Rep 20:82

    Article  Google Scholar 

  • Wirth A, Holst K, Ponimaskin E (2017) How serotonin receptors regulate morphogenic signalling in neurons. Prog Neurobiol 151:35–56

    Article  CAS  Google Scholar 

  • Zafarullah M, Tassone F (2019) Fragile X-associated tremor/ataxia syndrome (FXTAS). Methods Mol Biol 1942:173–189

    Article  CAS  Google Scholar 

  • Zhang G, Stackman RW Jr (2015) The role of serotonin 5-HT2A receptors in memory and cognition. Front Pharmacol 6:225

    Article  Google Scholar 

Download references

Funding

The study was funded by NOVA MENTIS Life Science Corp., by PRIN 2017 grant (2017SXEXT5) by MIUR (Viviana Trezza), and by Regione Lazio “Gruppi di ricerca 2020” grant # PROT. A0375-2020–36550 (Viviana Trezza).

Author information

Authors and Affiliations

Authors

Contributions

V.B. and E.C. performed, analyzed, and contributed to the design of the behavioral experiments. A.M., S.S. and A.F. contributed to the behavioral experiments. V.B., E.C., A.M., and J.V.P. wrote the manuscript. K.H.A. contributed to the statistical analysis of the behavioral data. M.H. contributed to the design of the experiments. V.T. supervised the project, designed the experiments, and wrote, revised, and edited the manuscript.

Corresponding author

Correspondence to Viviana Trezza.

Ethics declarations

Conflict of interest

Valeria Buzzelli, Emilia Carbone, Antonia Manduca, Sara Schiavi, Alessandro Feo, and Viviana Trezza have no conflict of interest. Julia V. Perederiy, Kyle H. Ambert, and Marvin Hausman are employees of NOVA MENTIS Life Science Corp.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Experimental setting of the short-term novel object recognition (NOR) task. We used a grey square arena (40 × 40 × 10 cm; l × w × h) for all the three phases of the task: during the habituation phase (A), the animal was individually placed in the middle of the empty arena for 5 minutes; subsequently, in the training phase (B), two identical objects were positioned inside the arena, allowing the animal to explore them for 5 minutes; 30 minutes after the training phase, the test session took place (C), where one copy of the familiar object (“old”) and a new object (“new”) were placed inside the arena and the animal was free to explore them for 5 min. (PNG 1894 kb)

High resolution image (TIFF 19779 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buzzelli, V., Carbone, E., Manduca, A. et al. Psilocybin mitigates the cognitive deficits observed in a rat model of Fragile X syndrome. Psychopharmacology 240, 137–147 (2023). https://doi.org/10.1007/s00213-022-06286-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-022-06286-3

Keywords

Navigation