Skip to main content

Advertisement

Log in

Antagonism of the ghrelin receptor type 1a in the rat brain induces status epilepticus in an electrical kindling model of epilepsy

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Studies have shown the anti-seizure properties of the ghrelin hormone in different models of epilepsy. Nevertheless, the role of the endogenous ghrelin is unknown in the electrical kindling model of epilepsy. In this study, we evaluated the effect of the antagonism of the ghrelin receptors in the brain of fully kindled rats. Adult male Wistar rats weighing 300 g were used. Animals were stereotaxically implanted with two uni-polar electrodes in the skull surface and a tri-polar electrode in the basolateral amygdala, and a guide cannula in the left lateral ventricle. Animals underwent a rapid kindling protocol. After showing three consecutive stages of five seizures, the animals were considered fully kindled. D-Lys-3-GHRP-6 (1, 50, and 100 μg/rat) was injected intracerebroventricularly (i.c.v.) in the kindled animals. Each rat was considered as its control and received a single dose of D-Lys-3-GHRP-6. Seizure parameters including after discharge duration (ADD), seizure stage (SS), stage four latency (S4L), and stage five duration (S5D) were recorded. The paired t test indicated a significant increase in seizure induction. D-Lys-3-GHRP-6 (1 μg/rat; i.c.v.) prolonged ADD in the kindled rats, significantly. D-Lys-3-GHRP-6 (50 and 100 μg/rat; i.c.v.) induced spontaneous seizures, which led to status epilepticus in the kindled rats. The results indicate that the antagonism of the ghrelin functional receptors prolongs seizures and induces status epilepticus in the kindling model of epilepsy, and propose that the endogenous ghrelin signaling has crucial antiepileptic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Mufti F, Claassen J (2014) Neurocritical care: status epilepticus review. Crit Care Clin 30:751–764

    Article  Google Scholar 

  • Aslan A, Yildirim M, Ayyildiz M, Guven A, Agar E (2009) The role of nitric oxide in the inhibitory effect of ghrelin against penicillin-induced epileptiform activity in rat. Neuropeptides 43:295–302

    Article  CAS  Google Scholar 

  • Ataie Z, Golzar MG, Babri S, Ebrahimi H, Mohaddes G (2011) Does ghrelin level change after epileptic seizure in rats? Seizure 20:347–349

    Article  CAS  Google Scholar 

  • Aydin S, Dag E, Ozkan Y, Arslan O, Koc G, Bek S, Kirbas S, Kasikci T, Abasli D, Gokcil Z, Odabasi Z, Catak Z (2011) Time-dependent changes in the serum levels of prolactin, nesfatin-1 and ghrelin as a marker of epileptic attacks young male patients. Peptides 32:1276–1280

    Article  CAS  Google Scholar 

  • Beheshti S, Sami M, Mirzabeh A, Yazdi A (2020) D-Lys-3-GHRP-6 impairs memory consolidation and downregulates the hippocampal serotonin HT1A, HT7 receptors and glutamate GluA1 subunit of AMPA receptors. Physiol Behav 223:112969

  • Berg KA, Clarke WP (2018) Making sense of pharmacology: inverse agonism and functional selectivity. Int J Neuropsychopharmacol 21:962–977

    Article  CAS  Google Scholar 

  • Biagini G, Torsello A, Marinelli C, Gualtieri F, Vezzali R, Coco S, Bresciani E, Locatelli V (2011) Beneficial effects of desacyl-ghrelin, hexarelin and EP-80317 in models of status epilepticus. Eur J Pharmacol 670:130–136

    Article  CAS  Google Scholar 

  • Buckinx A, Van Den Herrewegen Y, Pierre A, Cottone E, Ben Haj Salah K, Fehrentz JA, Kooijman R, De Bundel D, Smolders I (2019) Differential effects of a full and biased ghrelin receptor agonist in a mouse kindling model. Int J Mol Sci 20

  • Camina J (2006) Cell biology of the ghrelin receptor. J Neuroendocrinol 18:65–76

    Article  CAS  Google Scholar 

  • Carreira MC, Camiña JP, Díaz-Rodríguez E, Alvear-Perez R, Llorens-Cortes C, Casanueva FF (2006) Adenosine does not bind to the growth hormone secretagogue receptor type-1a (GHS-R1a). J Endocrinol 191:147–157

    Article  CAS  Google Scholar 

  • Coppens J, Aourz N, Walrave L, Fehrentz JA, Martinez J, De Bundel D, Portelli J, Smolders I (2016) Anticonvulsant effect of a ghrelin receptor agonist in 6Hz corneally kindled mice. Epilepsia 57:e195–e199

    Article  CAS  Google Scholar 

  • ErgulErkec O, Algul S, Kara M (2018) Evaluation of ghrelin, nesfatin-1 and irisin levels of serum and brain after acute or chronic pentylenetetrazole administrations in rats using sodium valproate. Neurol Res 40:923–929

    Article  CAS  Google Scholar 

  • Giordano C, Costa AM, Lucchi C, Leo G, Brunel L, Fehrentz JA, Martinez J, Torsello A, Biagini G (2016) Progressive seizure aggravation in the repeated 6-Hz corneal stimulation model is accompanied by marked increase in hippocampal p-ERK1/2 immunoreactivity in neurons. Front Cell Neurosci 10:281

    Article  Google Scholar 

  • Goddard GV, McIntyre DC, Leech CK (1969) A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol 25:295–330

    Article  CAS  Google Scholar 

  • Han K, Wang QY, Wang CX, Luan SY, Tian WP, Wang Y, Zhang RY (2018) Ghrelin improves pilocarpine-induced cerebral cortex inflammation in epileptic rats by inhibiting NF-κB and TNF-α. Mol Med Rep 18:3563–3568

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kenakin T (2004) Box 1. The operational model of drug action. Trends Pharmacol Sci 4:186–192

    Article  Google Scholar 

  • Kilic M, Gündüzalp M, Taskin E, Aydin S, Serin HM (2016) Assessment of the levels of serum Hsp 70 and ghrelin in children with simple febrile convulsions. Minerva Pediatr 68:127–133

    PubMed  Google Scholar 

  • Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656–660

    Article  CAS  Google Scholar 

  • Lee J, Lim E, Kim Y, Li E, Park S (2010) Ghrelin attenuates kainic acid-induced neuronal cell death in the mouse hippocampus. J Endocrinol 205:263–270

    Article  CAS  Google Scholar 

  • Lothman EW, Hatlelid JM, Zorumski CF, Conry JA, Moon PF, Perlin JB (1985) Kindling with rapidly recurring hippocampal seizures. Brain Res 360:83–91

    Article  CAS  Google Scholar 

  • Lothman EW, Williamson JM (1993) Rapid kindling with recurrent hippocampal seizures. Epilepsy Res 14:209–220

    Article  CAS  Google Scholar 

  • Lucchi C, Costa AM, Giordano C, Curia G, Piat M, Leo G, Vinet J, Brunel L, Fehrentz JA, Martinez J, Torsello A, Biagini G (2017) Involvement of PPARγ in the anticonvulsant activity of EP-80317, a ghrelin receptor antagonist. Front Pharmacol 8:676

    Article  Google Scholar 

  • Lucchi C, Curia G, Vinet J, Gualtieri F, Bresciani E, Locatelli V, Torsello A, Biagini G (2013) Protective but not anticonvulsant effects of ghrelin and JMV-1843 in the pilocarpine model of Status epilepticus. PloS one 8:e72716

    Article  CAS  Google Scholar 

  • Marchiò M, Roli L, Giordano C, Caramaschi E, Guerra A, Trenti T, Biagini G (2018) High plasma levels of ghrelin and des-acyl ghrelin in responders to antiepileptic drugs. Neurology 91:e62–e66

    Article  Google Scholar 

  • McKee KK, Palyha OC, Feighner SD, Hreniuk DL, Tan CP, Phillips MS, Smith RG, Van der Ploeg LH, Howard AD (1997) Molecular analysis of rat pituitary and hypothalamic growth hormone secretagogue receptors. Mol Endocrinol 11:415–423

    Article  CAS  Google Scholar 

  • McNamara JO, Byrne MC, Dasheiff RM, Fitz JG (1980) The kindling model of epilepsy: a review. Prog Neurobiol 15(2):139–159

    Article  CAS  Google Scholar 

  • Muccioli G, Baragli A, Granata R, Papotti M, Ghigo E (2007) Heterogeneity of ghrelin/growth hormone secretagogue receptors. Toward the understanding of the molecular identity of novel ghrelin/GHS receptors. Neuroendocrinology 86:147–164

    Article  CAS  Google Scholar 

  • Obay BD, Tasdemir E, Tümer C, Bilgin HM, Sermet A (2007) Antiepileptic effects of ghrelin on pentylenetetrazole-induced seizures in rats. Peptides 28:1214–1219

    Article  CAS  Google Scholar 

  • Patel K, Dixit VD, Lee JH, Kim JW, Schaffer EM, Nguyen D, Taub DD (2012) The GHS-R blocker D-[Lys3] GHRP-6 serves as CCR5 chemokine receptor antagonist. Int J Med Sci 9:51–58

    Article  CAS  Google Scholar 

  • Paxinos G, Watson C (2009) The rat brain in stereotaxic coordinates. Elsevier/Academic

  • Portelli J, Coppens J, Demuyser T, Smolders I (2015) Des-acyl ghrelin attenuates pilocarpine-induced limbic seizures via the ghrelin receptor and not the orexin pathway. Neuropeptides 51:1–7

    Article  CAS  Google Scholar 

  • Portelli J, Michotte Y, Smolders I (2012a) Ghrelin: an emerging new anticonvulsant neuropeptide. Epilepsia 53:585–595

    Article  CAS  Google Scholar 

  • Portelli J, Thielemans L, VerDonck L, Loyens E, Coppens J, Aourz N, Aerssens J, Vermoesen K, Clinckers R, Schallier A, Michotte Y, Moechars D, Collingridge GL, Bortolotto ZA, Smolders I (2012b) Inactivation of the constitutively active ghrelin receptor attenuates limbic seizure activity in rodents. Neurotherapeutics 9:658–672

  • Racine RJ (1972) Modification of seizure activity by electrical stimulation: II. Motor Seizure Electroencephalogr Clin Neurophysiol 32:281–294

    Article  CAS  Google Scholar 

  • Sayyah M, Beheshti S, Shokrgozar MA, Eslami-far A, Deljoo Z, Khabiri AR, HaeriRohani A (2005) Antiepileptogenic and anticonvulsant activity of interleukin-1 beta in amygdala-kindled rats. Exp Neurol 191:145–153

    Article  CAS  Google Scholar 

  • Schiöth HB, Muceniece R, Wikberg JE (1997) Characterization of the binding of MSH-B, HB-228, GHRP-6 and 153N–6 to the human melanocortin receptor subtypes. Neuropeptides 31:565–571

    Article  Google Scholar 

  • Smith MA, Hisadome K, Al-Qassab H, Heffron H, Withers DJ, Ashford ML (2007) Melanocortins and agouti-related protein modulate the excitability of two arcuate nucleus neuron populations by alteration of resting potassium conductances. J Physiol 578:425–438

    Article  CAS  Google Scholar 

  • Taskin E, Atli B, Kiliç M, Sari Y, Aydin S (2014) Serum, urine, and saliva levels of ghrelin and obestatin pre- and post-treatment in pediatric epilepsy. Pediatr Neurol 51:365–369

    Article  Google Scholar 

  • Wan S, Browning KN, Coleman FH, Sutton G, Zheng H, Butler A, Berthoud HR, Travagli RA (2008) Presynaptic melanocortin-4 receptors on vagal afferent fibers modulate the excitability of rat nucleus tractus solitarius neurons. J Neurosci 28:4957–4966

  • Zendehdel M, Kaboutari J, Ghadimi D, Hassanpour S (2014) The antiepileptic effect of ghrelin during different phases of the estrous cycle in PTZ-induced seizures in rat. Int J Pept Res Ther 20:511–517

    Article  CAS  Google Scholar 

  • Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK (2006) Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol 494:528–548

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grant no 64/98 from the Vice-chancellorships for Research and Technology, the University of Isfahan as part of a post-doctoral research program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siamak Beheshti.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azimzadeh, M., Beheshti, S. Antagonism of the ghrelin receptor type 1a in the rat brain induces status epilepticus in an electrical kindling model of epilepsy. Psychopharmacology 239, 479–487 (2022). https://doi.org/10.1007/s00213-021-06026-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-021-06026-z

Keywords

Navigation