Skip to main content

Advertisement

Log in

Low doses of ketamine and guanosine abrogate corticosterone-induced anxiety-related behavior, but not disturbances in the hippocampal NLRP3 inflammasome pathway

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Guanosine has been shown to potentiate ketamine’s antidepressant-like actions, although its ability to augment the anxiolytic effect of ketamine remains to be determined.

Objective

This study investigated the anxiolytic-like effects of a single administration with low doses of ketamine and/or guanosine in mice subjected to chronic administration of corticosterone and the role of NLRP3-driven signaling.

Methods

Corticosterone (20 mg/kg, p.o.) was administered for 21 days, followed by a single administration of ketamine (0.1 mg/kg, i.p.), guanosine (0.01 mg/kg, p.o.), or ketamine (0.1 mg/kg, i.p.) plus guanosine (0.01 mg/kg, p.o.). Anxiety-like behavior and NLRP3-related targets were analyzed 24 h following treatments.

Results

Corticosterone reduced the time spent in the open arms and the central zone in the elevated plus-maze test and open-field test, respectively. Corticosterone raised the number of unsupported rearings and the number and time of grooming, and decreased the latency to start grooming in the open-field test. Disturbances in regional distribution (increased rostral grooming) and grooming transitions (increased aborted and total incorrect transitions) were detected in corticosterone-treated mice. These behavioral alterations were accompanied by increased immunocontent of Iba-1, ASC, NLRP3, caspase-1, TXNIP, and IL-1β in the hippocampus, but not in the prefrontal cortex. The treatments with ketamine, guanosine, and ketamine plus guanosine were effective to counteract corticosterone-induced anxiety-like phenotype, but not disturbances in the hippocampal NLRP3 pathway.

Conclusions

Our study provides novel evidence that low doses of ketamine and/or guanosine reverse corticosterone-induced anxiety-like behavior and shows that the NLRP3 inflammasome pathway is likely unrelated to this response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Almeida RF, Comasseto DD, Ramos DB et al (2017) Guanosine anxiolytic-like effect involves adenosinergic and glutamatergic neurotransmitter systems. Mol Neurobiol 54:423–436

    Article  CAS  PubMed  Google Scholar 

  • Almeida RF, Pocharski CB, Rodrigues ALS et al (2020) Guanosine fast onset antidepressant-like effects in the olfactory bulbectomy mice model. Sci Rep 10:8429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aricioğlu F, Yalcinkaya C, Ozkartal CS et al (2020) NLRP1-mediated antidepressant effect of ketamine in chronic unpredictable mild stress model in rats. Psychiatry Investig 17:283–291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Autry AE, Adachi M, Nosyreva E et al (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475:91–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandelow B, Zohar J, Hollander E et al (2008) World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for the pharmacological treatment of anxiety, obsessive-compulsive and post-traumatic stress disorders. World J Biol Psychiatry 9:248–312

    Article  PubMed  Google Scholar 

  • Barowsky J, Schwartz TL (2006) An evidence-based approach to augmentation and combination strategies for treatment resistant depression. Psychiatry 3:42–61

    PubMed  PubMed Central  Google Scholar 

  • Belleau EL, Treadway MT, Pizzagalli DA (2019) The impact of stress and major depressive disorder on hippocampal and medial prefrontal cortex morphology. Biol. Psychiatry 85:443–453

    Article  PubMed  Google Scholar 

  • Berman RM, Cappiello A, Anand A et al (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351–354

    Article  CAS  PubMed  Google Scholar 

  • Bettio LEB, Cunha MP, Budni J et al (2012) Guanosine produces an antidepressant-like effect through the modulation of NMDA receptors, nitric oxide-cGMP and PI3K/mTOR pathways. Behav Brain Res 234:137–148

    Article  CAS  PubMed  Google Scholar 

  • Brachman RA, McGowan JC, Perusini JN et al (2016) Ketamine as a prophylactic against stress-induced depressive-like behavior. Biol Psychiatry 79:776–786

    Article  CAS  PubMed  Google Scholar 

  • Camargo A, Dalmagro AP, Zeni ALB, Rodrigues ALS (2020a) Guanosine potentiates the antidepressant-like effect of subthreshold doses of ketamine: possible role of pro-synaptogenic signaling pathway. J Affect Disord 271:100–108

    Article  CAS  PubMed  Google Scholar 

  • Camargo A, Dalmagro AP, Rosa JM et al (2020b) Subthreshold doses of guanosine plus ketamine elicit antidepressant-like effect in a mouse model of depression induced by corticosterone: role of GR/NF-κB/IDO-1 signaling. Neurochem Int 139:104797

    Article  CAS  PubMed  Google Scholar 

  • Camargo A, Dalmagro AP, de Souza MM et al (2020c) Ketamine, but not guanosine, as a prophylactic agent against corticosterone-induced depressive-like behavior: possible role of long-lasting pro-synaptogenic signaling pathway. Exp Neurol 334:113459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camargo A, Pazini FL, Rosa JM et al (2019) Augmentation effect of ketamine by guanosine in the novelty-suppressed feeding test is dependent on mTOR signaling pathway. J Psychiatr Res 115:103–112

    Article  PubMed  Google Scholar 

  • Camargo A, Rodrigues ALS (2019) Novel targets for fast antidepressant responses: possible role of endogenous neuromodulators. Chronic Stress 3:247054701985808

    Article  Google Scholar 

  • Chen MH, Li CT, Lin WC et al (2018) Rapid inflammation modulation and antidepressant efficacy of a low-dose ketamine infusion in treatment-resistant depression: a randomized, double-blind control study. Psychiatry Res 269:207–211

    Article  CAS  PubMed  Google Scholar 

  • Colla ARS, Rosa JM, Cunha MP, Rodrigues ALS (2015) Anxiolytic-like effects of ursolic acid in mice. Eur J Pharmacol 758:171–176

    Article  CAS  PubMed  Google Scholar 

  • Cunha MP, Pazini FL, Rosa JM et al (2015a) Creatine, similarly to ketamine, affords antidepressant-like effects in the tail suspension test via adenosine A1 and A2A receptor activation. Purinergic Signal 11:215–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunha MP, Pazini FL, Ludka FK et al (2015b) The modulation of NMDA receptors and L-arginine/nitric oxide pathway is implicated in the anti-immobility effect of creatine in the tail suspension test. Amino Acids 47:795–811

    Article  CAS  PubMed  Google Scholar 

  • Dalmagro AP, Camargo A, Zimath PL et al (2020) Plumieride exerts anxiolytic-like effect mediated by GABAergic and monoaminergic systems. Nat Prod Res 11:1–4

    CAS  Google Scholar 

  • David DJ, Samuels BA, Rainer Q et al (2009) Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 62:479–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estanislau C, Veloso AWN, Filgueiras GB et al (2019) Rat self-grooming and its relationships with anxiety, dearousal and perseveration: evidence for a self-grooming trait. Physiol Behav 209:112585

    Article  CAS  PubMed  Google Scholar 

  • Fava M, Rush AJ, Alpert JE et al (2008) Difference in treatment outcome in outpatients with anxious versus nonanxious depression: a STAR*D report. Am J Psychiatry 165:342–351

    Article  PubMed  Google Scholar 

  • Felger JC (2017) Imaging the role of inflammation in mood and anxiety-related disorders. Curr Neuropharmacol 15:533

    Google Scholar 

  • Feng X, Zhao Y, Yang T et al (2019) Glucocorticoid-driven NLRP3 inflammasome activation in hippocampal microglia mediates chronic stress-induced depressive-like behaviors. Front Mol Neurosci 12:210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraga DB, Costa AP, Olescowicz G et al (2020) Ascorbic acid presents rapid behavioral and hippocampal synaptic plasticity effects. Prog Neuropsychopharmacol Biol Psychiatry 96:109757

    Article  CAS  PubMed  Google Scholar 

  • Fraga DB, Olescowicz G, Moretti M et al (2018) Anxiolytic effects of ascorbic acid and ketamine in mice. J Psychiatr Res 100:16–23

    Article  PubMed  Google Scholar 

  • Gao M, Rejaei D, Liu H (2016) Ketamine use in current clinical practice. Acta Pharmacol Sin 37:865–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilhotra N, Dhingra D (2009) Involvement of NO-cGMP pathway in anti-anxiety effect of aminoguanidine in stressed mice. Prog Neuropsychopharmacol Biol Psychiatry 33:1502–1507

    Article  CAS  PubMed  Google Scholar 

  • Giuliani P, Ballerini P, Ciccarelli R et al (2012) Tissue distribution and metabolism of guanosine in rats following intraperitoneal injection. J Biol Regul Homeost Agents 26:51–65

    CAS  PubMed  Google Scholar 

  • Glue P, Medlicott NJ, Harland S et al (2017) Ketamine’s dose-related effects on anxiety symptoms in patients with treatment refractory anxiety disorders. J Psychopharmacol 31:1302–1305

    Article  CAS  PubMed  Google Scholar 

  • Goldberg DP, Wittchen HU, Zimmermann P et al (2014) Anxious and non-anxious forms of major depression: familial, personality and symptom characteristics. Psychol Med 44:1223–1234

    Article  CAS  PubMed  Google Scholar 

  • Griebel G, Holmes A (2013) 50 years of hurdles and hope in anxiolytic drug discovery. Nat Rev Drug Discov 12:667–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holubova K, Kleteckova L, Skurlova M et al (2016) Rapamycin blocks the antidepressant effect of ketamine in task-dependent manner. Psychopharmacology 233:2077–2097

    Article  CAS  PubMed  Google Scholar 

  • Ionescu DF, Luckenbaugh DA, Niciu MJ et al (2015) A single infusion of ketamine improves depression scores in patients with anxious bipolar depression. Bipolar Disord 17:438–443

    Article  CAS  PubMed  Google Scholar 

  • Iwata M, Ota KT, Duman RS (2013) The inflammasome: pathways linking psychological stress, depression, and systemic illnesses. Brain Behav Immun 31:105–114

    Article  CAS  PubMed  Google Scholar 

  • Jiang S, Fischione G, Guiliani P et al (2008) Metabolism and distribution of guanosine given intraperitoneally: implications for spinal cord injury. Nucleosides, Nucleotides and Nucleic Acids 7770:673–680

    Article  CAS  Google Scholar 

  • Jo EK, Kim JK, Shin DM, Sasakawa C (2015) Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol 13:148–159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Juruena MF, Eror F, Cleare AJ, Young AH (2020) The role of early life stress in HPA axis and anxiety. In: Advances in Experimental Medicine and Biology. Springer, pp 141–153.

  • Kalueff AV, Stewart AM, Song C et al (2016) Neurobiology of rodent self-grooming and its value for translational neuroscience. Nat Rev Neurosci 17:45–59

    Article  CAS  PubMed  Google Scholar 

  • Kalueff AV, Tuohimaa P (2005a) The grooming analysis algorithm discriminates between different levels of anxiety in rats: potential utility for neurobehavioural stress research. J Neurosci Methods 143:169–177

    Article  PubMed  Google Scholar 

  • Kalueff AV, Tuohimaa P (2005b) Mouse grooming microstructure is a reliable anxiety marker bidirectionally sensitive to GABAergic drugs. Eur J Pharmacol 508:147–153

    Article  CAS  PubMed  Google Scholar 

  • Kalueff AV, Wayne Aldridge J, Laporte JL et al (2007) Analyzing grooming microstructure in neurobehavioral experiments. Nat Protoc 2:2538–2544

    Article  CAS  PubMed  Google Scholar 

  • Kaster MP, Moretti M, Cunha MP, Rodrigues ALS (2016) Novel approaches for the management of depressive disorders. Eur J Pharmacol 771:236–240

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann FN, Costa AP, Ghisleni G et al (2017) NLRP3 inflammasome-driven pathways in depression: clinical and preclinical findings. Brain Behav Immun 64:367–383

    Article  CAS  PubMed  Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP et al (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans psychotomimetic, perceptual, cognitive, and neuroendocrine responses. J Am Med Assoc 51:199–214

    CAS  Google Scholar 

  • Kv A, Madhana RM, JS IC et al (2018) Antidepressant activity of vorinostat is associated with amelioration of oxidative stress and inflammation in a corticosterone-induced chronic stress model in mice. Behav Brain Res 344:73–84

    Article  PubMed  CAS  Google Scholar 

  • Lee AL, Ogle WO, Sapolsky RM (2002) Stress and depression: possible links to neuron death in the hippocampus. Bipolar Disord 4:117–128

    Article  CAS  PubMed  Google Scholar 

  • Lezak KR, Missig G, Carlezon WA (2017) Behavioral methods to study anxiety in rodents. Dialogues Clin Neurosci 19:181–191

    Article  PubMed  PubMed Central  Google Scholar 

  • Li JM, Liu LL, Su WJ et al (2019) Ketamine may exert antidepressant effects via suppressing NLRP3 inflammasome to upregulate AMPA receptors. Neuropharmacology 146:149–153

    Article  CAS  PubMed  Google Scholar 

  • Li N, Lee B, Liu RJ et al (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329:959–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorigooini Z, Nasiri boroujeni S, Balali-Dehkordi S et al (2020) Possible involvement of NMDA receptor in the anxiolytic-like effect of caffeic acid in mice model of maternal separation stress. Heliyon 6:e04833

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorigooini Z, Nouri A, Mottaghinia F et al (2021) Ferulic acid through mitigation of NMDA receptor pathway exerts anxiolytic-like effect in mouse model of maternal separation stress. J Basic Clin Physiol Pharmacol 32:1–10

    Google Scholar 

  • Ludka FK, Zomkowski ADE, Cunha MP et al (2013) Acute atorvastatin treatment exerts antidepressant-like effect in mice via the L-arginine-nitric oxide-cyclic guanosine monophosphate pathway and increases BDNF levels. Eur Neuropsychopharmacol 23:400–412

    Article  CAS  PubMed  Google Scholar 

  • Mastrodonato A, Cohensedgh O, LaGamma CT et al (2020) Prophylactic (R, S)-ketamine selectively protects against inflammatory stressors. Behav Brain Res 378:112238

    Article  CAS  PubMed  Google Scholar 

  • Maxwell CR, Ehrlichman RS, Liang Y et al (2006) Ketamine produces lasting disruptions in encoding of sensory stimuli. J Pharmacol Exp Ther 316:315–324

    Article  CAS  PubMed  Google Scholar 

  • McGowan JC, Hill C, Mastrodonato A et al (2018) Prophylactic ketamine alters nucleotide and neurotransmitter metabolism in brain and plasma following stress. Neuropsychopharmacology 43:1813–1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65:732–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller AH, Raison CL (2016) The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol 16:22–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moret C (2005) Combination / augmentation strategies for improving the treatment of depression. Neuropsychiatr Dis Treat 1:301–309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pan Y, Chen XY, Zhang QY, Kong LD (2014) Microglial NLRP3 inflammasome activation mediates IL-1β-related inflammation in prefrontal cortex of depressive rats. Brain Behav Immun 41:90–100

    Article  CAS  PubMed  Google Scholar 

  • Papakostas GI, Ionescu DF (2015) Towards new mechanisms: an update on therapeutics for treatment-resistant major depressive disorder. Mol Psychiatry 20:1142–1150

    Article  CAS  PubMed  Google Scholar 

  • Papakostas GI, Petersen TJ, Green C et al (2005) A description of next-step switching versus augmentation practices for outpatients with treatment-resistant major depressive disorder enrolled in an academic specialty clinic. Ann Clin Psychiatry 17:161–165

    Article  PubMed  Google Scholar 

  • Pazini FL, Cunha MP, Rosa JM et al (2016) Creatine, similar to ketamine, counteracts depressive-like behavior induced by corticosterone via PI3K/Akt/mTOR pathway. Mol Neurobiol 53:6818–6834

    Article  CAS  PubMed  Google Scholar 

  • Peterson GL (1977) A simplification of the protein assay method of Lowry, et al. which is more generally applicable. Anal Biochem 83:346–356

    Article  CAS  PubMed  Google Scholar 

  • Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463:3–33

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues ALS, Rocha JBT, Mello CF, Souza DO (1996) Effect of perinatal lead exposure on rat behaviour in open-field and two-way avoidance tasks. Pharmacol Toxicol 79:150–156

    Article  CAS  PubMed  Google Scholar 

  • Rosa PB, Bettio LEB, Neis VB et al (2019) The antidepressant-like effect of guanosine is dependent on GSK-3β inhibition and activation of MAPK/ERK and Nrf2/heme oxygenase-1 signaling pathways. Purinergic Signal 15:491–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosa PB, Bettio LEB, Neis VB et al (2021) Antidepressant-like effect of guanosine involves activation of AMPA receptor and BDNF/TrkB signaling. Purinergic Signal. https://doi.org/10.1007/s11302-021-09779-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt AP, Paniz L, Schallenberger C et al (2010) Guanosine prevents thermal hyperalgesia in a rat model of peripheral mononeuropathy. J Pain 11:131–141

    Article  CAS  PubMed  Google Scholar 

  • Sterner EY, Kalynchuk LE (2010) Behavioral and neurobiological consequences of prolonged glucocorticoid exposure in rats: relevance to depression. Prog Neuropsychopharmacol Biol Psychiatry 34:777–790

    Article  CAS  PubMed  Google Scholar 

  • Sturman O, Germain PL, Bohacek J (2018) Exploratory rearing: a context- and stress-sensitive behavior recorded in the open-field test. Stress 21:443–452

    Article  PubMed  Google Scholar 

  • Su WJ, Zhang Y, Chen Y et al (2017) NLRP3 gene knockout blocks NF-κB and MAPK signaling pathway in CUMS-induced depression mouse model. Behav Brain Res 322:1–8

    Article  CAS  PubMed  Google Scholar 

  • Swanson KV, Deng M, Ting JPY (2019) The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 19:477–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinadé ER, Schmidt AP, Frizzo MES et al (2005) Effects of chronic administered guanosine on behavioral parameters and brain glutamate uptake in rats. J Neurosci Res 79:248–253

    Article  PubMed  CAS  Google Scholar 

  • Vogelzangs N, Beekman ATF, De Jonge P, Penninx BWJH (2013) Anxiety disorders and inflammation in a large adult cohort. Transl Psychiatry 3:249

    Article  CAS  Google Scholar 

  • Vogelzangs N, de Jonge P, Smit JH et al (2016) Cytokine production capacity in depression and anxiety. Transl Psychiatry 6:e825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong ML, Inserra A, Lewis MD et al (2016) Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition. Mol Psychiatry 21:797–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (2017) Depression and other common mental disorders: global health estimates. World Health Organanization 1–24

  • Zanos P, Moaddel R, Morris P et al (2018) Ketamine and ketamine metabolite pharmacology: insights into therapeutic mechanisms. Pharmacol Rev 70:621–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarate CA, Singh JB, Carlson PJ et al (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63:856–864

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Kalueff AV, Song C (2019) Minocycline ameliorates anxiety-related self-grooming behaviors and alters hippocampal neuroinflammation, GABA and serum cholesterol levels in female Sprague-Dawley rats subjected to chronic unpredictable mild stress. Behav Brain Res 363:109–117

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Liu L, Liu Y-Z et al (2015) NLRP3 inflammasome mediates chronic mild stress-induced depression in mice via neuroinflammation. Int J Neuropsychopharmacol 18:1–8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank funding agencies CNPq and CAPES for the financial support, and the Laboratório Multiusuário de Estudos em Biologia (LAMEB) for the technical support.

Funding

This study was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq #310113/2017-2) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). Ana Lúcia S. Rodrigues and Manuella P. Kaster are recipients of CNPq Research Productivity Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Ana Lúcia S. Rodrigues: conceptualization, funding acquisition, project administration, resources, and supervision, and revision of the manuscript. Anderson Camargo: data curation, formal analysis, investigation, methodology, project administration, software, and writing the manuscript draft. Ana P. Dalmagro: data curation, formal analysis, investigation, and methodology. Daiane B. Fraga: data curation, formal analysis, investigation, and methodology. Julia M. Rosa: investigation, and methodology. Ana Lúcia B. Zeni: investigation, and methodology. Manuella P. Kaster: conceptualization, investigation, methodology, and writing the manuscript draft.

Corresponding author

Correspondence to Ana Lúcia S. Rodrigues.

Ethics declarations

The procedures used in this study complied with the guidelines on animal care of the UFSC Ethics Committee on the Use of Animals (CEUA), which follow the principles of laboratory animal care from NIH (2011).

Ethical approval

The experiments were performed after approval of the protocol by the Institutional Ethics Committee and according to the National Institute of Health Guide for the Care and Use of Laboratory Animals.

Conflict of interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camargo, A., Dalmagro, A.P., Fraga, D.B. et al. Low doses of ketamine and guanosine abrogate corticosterone-induced anxiety-related behavior, but not disturbances in the hippocampal NLRP3 inflammasome pathway. Psychopharmacology 238, 2555–2568 (2021). https://doi.org/10.1007/s00213-021-05879-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-021-05879-8

Keywords

Navigation