Skip to main content

Advertisement

Log in

Sodium phenylbutyrate reduces repetitive self-grooming behavior and rescues social and cognitive deficits in mouse models of autism

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Autism spectrum disorder (ASD) is a neurodevelopment disorder characterized by deficits in social interaction and restrictive, repetitive, and stereotypical patterns of behavior. However, there is no pharmacological drug that is currently used to target these core ASD symptoms. Sodium phenylbutyrate (NaPB) is a well-known long-term treatment of urea cycle disorders in children. In this study, we assessed the therapeutic effects of NaPB, which is a chemical chaperone as well as histone deacetylase inhibitor on a BTBR T + Itpr3tf/J (BTBR) mice model of ASD. We found that acute and chronic treatment of NaPB remarkably improved, not only core ASD symptoms, including repetitive behaviors and sociability deficit, but also cognitive impairment in the BTBR mice. NaPB substantially induced histone acetylation in the brain of the BTBR mice. Intriguingly, the therapeutic effects of NaPB on autistic-like behaviors, such as repetitive behaviors, impaired sociability, and cognitive deficit also showed in the valproic acid (VPA)–induced mouse model of autism. In addition, pentylenetetrazole (PTZ)-induced seizure was significantly attenuated by NaPB treatment in C57BL/6J and BTBR mice. These findings suggest that NaPB may provide a novel therapeutic approach for the treatment of patients with ASD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Becker A, Grecksch G, Schroder H (1995) N omega-nitro-L-arginine methyl ester interferes with pentylenetetrazol-induced kindling and has no effect on changes in glutamate binding. Brain Res 688:230–232

    Article  CAS  PubMed  Google Scholar 

  • Belforte JE, Zsiros V, Sklar ER, Jiang Z, Yu G, Li Y, Quinlan EM, Nakazawa K (2010) Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat Neurosci 13:76–83

    Article  CAS  PubMed  Google Scholar 

  • Braissant O (2010) Current concepts in the pathogenesis of urea cycle disorders. Mol Genet Metab 100(Suppl 1):S3–S12

    Article  CAS  PubMed  Google Scholar 

  • Brigham EF, Johnston TH, Brown C, Holt JDS, Fox SH, Hill MP, Howson PA, Brotchie JM, Nguyen JT (2018) Pharmacokinetic/pharmacodynamic correlation analysis of amantadine for levodopa-induced dyskinesia. J Pharmacol Exp Ther 367:373–381

    Article  CAS  PubMed  Google Scholar 

  • Canitano R (2007) Epilepsy in autism spectrum disorders. Eur Child Adolesc Psychiatry 16:61–66

    Article  PubMed  Google Scholar 

  • Chadman KK, Guariglia SR, Yoo JH (2012) New directions in the treatment of autism spectrum disorders from animal model research. Expert Opin Drug Discovery 7:407–416

    Article  CAS  Google Scholar 

  • Chen JA, Penagarikano O, Belgard TG, Swarup V, Geschwind DH (2015) The emerging picture of autism spectrum disorder: genetics and pathology. Annu Rev Pathol 10:111–144

    Article  CAS  PubMed  Google Scholar 

  • Conrad CD, Galea LA, Kuroda Y, McEwen BS (1996) Chronic stress impairs rat spatial memory on the Y maze, and this effect is blocked by tianeptine pretreatment. Behav Neurosci 110:1321–1334

    Article  CAS  PubMed  Google Scholar 

  • Corbett GT, Roy A, Pahan K (2013) Sodium phenylbutyrate enhances astrocytic neurotrophin synthesis via protein kinase C (PKC)-mediated activation of cAMP-response element-binding protein (CREB): implications for Alzheimer disease therapy. J Biol Chem 288:8299–8312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbett BF, You JC, Zhang X, Pyfer MS, Tosi U, Iascone DM, Petrof I, Hazra A, Fu CH, Stephens GS, Ashok AA, Aschmies S, Zhao L, Nestler EJ, Chin J (2017) DeltaFosB regulates gene expression and cognitive dysfunction in a mouse model of Alzheimer’s disease. Cell Rep 20:344–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, Kou Y, Liu L, Fromer M, Walker S, Singh T, Klei L, Kosmicki J, Shih-Chen F, Aleksic B, Biscaldi M, Bolton PF, Brownfeld JM, Cai J, Campbell NG, Carracedo A, Chahrour MH, Chiocchetti AG, Coon H, Crawford EL, Curran SR, Dawson G, Duketis E, Fernandez BA, Gallagher L, Geller E, Guter SJ, Hill RS, Ionita-Laza J, Jimenz Gonzalez P, Kilpinen H, Klauck SM, Kolevzon A, Lee I, Lei I, Lei J, Lehtimaki T, Lin CF, Ma’ayan A, Marshall CR, McInnes AL, Neale B, Owen MJ, Ozaki N, Parellada M, Parr JR, Purcell S, Puura K, Rajagopalan D, Rehnstrom K, Reichenberg A, Sabo A, Sachse M, Sanders SJ, Schafer C, Schulte-Ruther M, Skuse D, Stevens C, Szatmari P, Tammimies K, Valladares O, Voran A, Li-San W, Weiss LA, Willsey AJ, Yu TW, Yuen RK, Cook EH, Freitag CM, Gill M, Hultman CM, Lehner T, Palotie A, Schellenberg GD, Sklar P, State MW, Sutcliffe JS, Walsh CA, Scherer SW, Zwick ME, Barett JC, Cutler DJ, Roeder K, Devlin B, Daly MJ, Buxbaum JD (2014) Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515:209–215

    Article  PubMed  PubMed Central  Google Scholar 

  • Deutsch SI, Pepe GJ, Burket JA, Winebarger EE, Herndon AL, Benson AD (2012) D-cycloserine improves sociability and spontaneous stereotypic behaviors in 4-week old mice. Brain Res 1439:96–107

    Article  CAS  PubMed  Google Scholar 

  • Dutta S, Sengupta P (2016) Men and mice: Relating their ages. Life Sci 152:244–248

    Article  CAS  PubMed  Google Scholar 

  • Edfawy M, Guedes JR, Pereira MI, Laranjo M, Carvalho MJ, Gao X, Ferreira PA, Caldeira G, Franco LO, Wang D, Cardoso AL, Feng G, Carvalho AL, Peca J (2019) Abnormal mGluR-mediated synaptic plasticity and autism-like behaviours in Gprasp2 mutant mice. Nat Commun 10:1431

    Article  PubMed  PubMed Central  Google Scholar 

  • Felix-Ortiz AC, Tye KM (2014) Amygdala inputs to the ventral hippocampus bidirectionally modulate social behavior. J Neurosci 34:586–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer A, Sananbenesi F, Mungenast A, Tsai LH (2010) Targeting the correct HDAC(s) to treat cognitive disorders. Trends Pharmacol Sci 31:605–617

    Article  CAS  PubMed  Google Scholar 

  • Fleischmann A, Hvalby O, Jensen V, Strekalova T, Zacher C, Layer LE, Kvello A, Reschke M, Spanagel R, Sprengel R, Wagner EF, Gass P (2003) Impaired long-term memory and NR2A-type NMDA receptor-dependent synaptic plasticity in mice lacking c-Fos in the CNS. J Neurosci 23:9116–9122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frye RE (2015) Metabolic and mitochondrial disorders associated with epilepsy in children with autism spectrum disorder. Epilepsy Behavior 47:147–157

    Article  PubMed  Google Scholar 

  • Go J, Ha TKQ, Seo JY, Park TS, Ryu YK, Park HY, Noh JR, Kim YH, Hwang JH, Choi DH, Hang DY, Kim S, Lee CH, Oh WK, Kim KS (2018a) Piperlongumine activates Sirtuin1 and improves cognitive function in a murine model of Alzheimer’s disease. J Funct Foods 43:103–111

    Article  CAS  Google Scholar 

  • Go J, Park TS, Han GH, Park HY, Ryu YK, Kim YH, Hwang JH, Choi DH, Noh JR, Hwang DY, Kim S, Oh WK, Lee CH, Kim KS (2018b) Piperlongumine decreases cognitive impairment and improves hippocampal function in aged mice. Int J Mol Med 42:1875–1884

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graff J, Tsai LH (2013a) Histone acetylation: molecular mnemonics on the chromatin. Nat Rev Neurosci 14:97–111

    Article  PubMed  Google Scholar 

  • Graff J, Tsai LH (2013b) The potential of HDAC inhibitors as cognitive enhancers. Annu Rev Pharmacol Toxicol 53:311–330

    Article  CAS  PubMed  Google Scholar 

  • He B, Moreau R (2019) Lipid-regulating properties of butyric acid and 4-phenylbutyric acid: Molecular mechanisms and therapeutic applications. Pharmacol Res 144:116–131

    Article  CAS  PubMed  Google Scholar 

  • Hetherington MBD, Hay D (2000) Mouse care and husbandry. In: IJ Jackson CMA (ed) Mouse genetics and transgenics: a practical approach. Oxford University Press Oxford

  • Iannitti T, Palmieri B (2011) Clinical and experimental applications of sodium phenylbutyrate. Drugs R&D 11:227–249

    Article  Google Scholar 

  • Kim KS, Lee KW, Im JY, Yoo JY, Kim SW, Lee JK, Nestler EJ, Han PL (2006) Adenylyl cyclase type 5 (AC5) is an essential mediator of morphine action. Proc Natl Acad Sci U S A 103:3908–3913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Lim CS, Kaang BK (2016) Neuronal mechanisms and circuits underlying repetitive behaviors in mouse models of autism spectrum disorder. Behav Brain Funct 12:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Kratsman N, Getselter D, Elliott E (2016) Sodium butyrate attenuates social behavior deficits and modifies the transcription of inhibitory/excitatory genes in the frontal cortex of an autism model. Neuropharmacology 102:136–145

    Article  CAS  PubMed  Google Scholar 

  • Krivitzky L, Babikian T, Lee HS, Thomas NH, Burk-Paull KL, Batshaw ML (2009) Intellectual, adaptive, and behavioral functioning in children with urea cycle disorders. Pediatr Res 66:96–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee NY, Kang YS (2016) In vivo and in vitro evidence for brain uptake of 4-phenylbutyrate by the monocarboxylate transporter 1 (MCT1). Pharm Res 33:1711–1722

    Article  CAS  PubMed  Google Scholar 

  • Lim SH, Shin S, Kim MH, Kim EC, Lee DY, Moon J, Park HY, Ryu YK, Kang YM, Kang YJ, Kim TH, Lee NY, Kim NS, Yu DY, Shim I, Gondo Y, Satake M, Kim E, Kim KS, Min SS, Lee JR (2020) Depression-like behaviors induced by defective PTPRT activity through dysregulated synaptic functions and neurogenesis. J Cell Sci 133

  • Liu X, Takumi T (2014) Genomic and genetic aspects of autism spectrum disorder. Biochem Biophys Res Commun 452:244–253

    Article  CAS  PubMed  Google Scholar 

  • Ma K, Qin L, Matas E, Duffney LJ, Liu A, Yan Z (2018) Histone deacetylase inhibitor MS-275 restores social and synaptic function in a Shank3-deficient mouse model of autism. Neuropsychopharmacology 43:1779–1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madabhushi R, Gao F, Pfenning AR, Pan L, Yamakawa S, Seo J, Rueda R, Phan TX, Yamakawa H, Pao PC, Stott RT, Gjoneska E, Nott A, Cho S, Kellis M, Tsai LH (2015) Activity-induced DNA breaks govern the expression of neuronal early-response genes. Cell 161:1592–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McFarlane HG, Kusek GK, Yang M, Phoenix JL, Bolivar VJ, Crawley JN (2008) Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes Brain Behav 7:152–163

    Article  CAS  PubMed  Google Scholar 

  • Meyza K, Nikolaev T, Kondrakiewicz K, Blanchard DC, Blanchard RJ, Knapska E (2015) Neuronal correlates of asocial behavior in a BTBR T (+) Itpr3(tf)/J mouse model of autism. Front Behav Neurosci 9:199

    Article  PubMed  PubMed Central  Google Scholar 

  • Mizoguchi H, Nakade J, Tachibana M, Ibi D, Someya E, Koike H, Kamei H, Nabeshima T, Itohara S, Takuma K, Sawada M, Sato J, Yamada K (2011) Matrix metalloproteinase-9 contributes to kindled seizure development in pentylenetetrazole-treated mice by converting pro-BDNF to mature BDNF in the hippocampus. J Neurosci 31:12963–12971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moy SS, Nadler JJ, Perez A, Barbaro RP, Johns JM, Magnuson TR, Piven J, Crawley JN (2004) Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav 3:287–302

    Article  CAS  PubMed  Google Scholar 

  • Nicolini C, Fahnestock M (2018) The valproic acid-induced rodent model of autism. Exp Neurol 299:217–227

    Article  CAS  PubMed  Google Scholar 

  • Park TS, Ryu YK, Park HY, Kim JY, Go J, Noh JR, Kim YH, Hwang JH, Choi DH, Oh WK, Lee CH, Kim KS (2017) Humulus japonicus inhibits the progression of Alzheimer’s disease in a APP/PS1 transgenic mouse model. Int J Mol Med 39:21–30

    Article  CAS  PubMed  Google Scholar 

  • Pena-Quintana L, Llarena M, Reyes-Suarez D, Aldamiz-Echevarria L (2017) Profile of sodium phenylbutyrate granules for the treatment of urea-cycle disorders: patient perspectives. Patient Prefer Adherence 11:1489–1496

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin L, Ma K, Wang ZJ, Hu Z, Matas E, Wei J, Yan Z (2018) Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition. Nat Neurosci 21:564–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rellmann Y, Gronau I, Hansen U, Dreier R (2019) 4-Phenylbutyric acid reduces endoplasmic reticulum stress in chondrocytes that is caused by loss of the protein disulfide isomerase ERp57. Oxidative Med Cell Longev 2019:6404035

    Article  Google Scholar 

  • Richdale AL, Schreck KA (2009) Sleep problems in autism spectrum disorders: prevalence, nature, & possible biopsychosocial aetiologies. Sleep Med Rev 13:403–411

    Article  PubMed  Google Scholar 

  • Ricobaraza A, Cuadrado-Tejedor M, Perez-Mediavilla A, Frechilla D, Del Rio J, Garcia-Osta A (2009) Phenylbutyrate ameliorates cognitive deficit and reduces tau pathology in an Alzheimer’s disease mouse model. Neuropsychopharmacology 34:1721–1732

    Article  CAS  PubMed  Google Scholar 

  • Robertson CE, Baron-Cohen S (2017) Sensory perception in autism. Nat Rev Neurosci 18:671–684

    Article  CAS  PubMed  Google Scholar 

  • Roullet FI, Lai JK, Foster JA (2013) In utero exposure to valproic acid and autism--a current review of clinical and animal studies. Neurotoxicol Teratol 36:47–56

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Ghosh A, Jana A, Liu X, Brahmachari S, Gendelman HE, Pahan K (2012) Sodium phenylbutyrate controls neuroinflammatory and antioxidant activities and protects dopaminergic neurons in mouse models of Parkinson’s disease. PLoS One 7:e38113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu H, Smith K, Camelo SI, Carreras I, Lee J, Iglesias AH, Dangond F, Cormier KA, Cudkowicz ME, Brown RH Jr, Ferrante RJ (2005) Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice. J Neurochem 93:1087–1098

    Article  CAS  PubMed  Google Scholar 

  • Schroder H, Becker A, Lossner B (1993) Glutamate binding to brain membranes is increased in pentylenetetrazole-kindled rats. J Neurochem 60:1007–1011

    Article  CAS  PubMed  Google Scholar 

  • Sealey LA, Hughes BW, Sriskanda AN, Guest JR, Gibson AD, Johnson-Williams L, Pace DG, Bagasra O (2016) Environmental factors in the development of autism spectrum disorders. Environ Int 88:288–298

    Article  CAS  PubMed  Google Scholar 

  • Shen HY, Kalda A, Yu L, Ferrara J, Zhu J, Chen JF (2008) Additive effects of histone deacetylase inhibitors and amphetamine on histone H4 acetylation, cAMP responsive element binding protein phosphorylation and DeltaFosB expression in the striatum and locomotor sensitization in mice. Neuroscience 157:644–655

    Article  CAS  PubMed  Google Scholar 

  • Tsankova NM, Kumar A, Nestler EJ (2004) Histone modifications at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures. J Neurosci 24:5603–5610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuchman R, Rapin I (2002) Epilepsy in autism. Lancet Neurol 1:352–358

    Article  PubMed  Google Scholar 

  • Valicenti-McDermott M, McVicar K, Rapin I, Wershil BK, Cohen H, Shinnar S (2006) Frequency of gastrointestinal symptoms in children with autistic spectrum disorders and association with family history of autoimmune disease. J Dev Behav Pediatr 27:S128–S136

    Article  PubMed  Google Scholar 

  • Yu X, Taylor AMW, Nagai J, Golshani P, Evans CJ, Coppola G, Khakh BS (2018) Reducing astrocyte calcium signaling in vivo alters striatal microcircuits and causes repetitive behavior. Neuron 99:1170–1187 e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the KRIBB Research Initiative Program of the Republic of Korea, by the Development of Platform Technology for Innovative Medical Measurements Program (KRISS-2020-GP2020-0004) from the Korea Research Institute of Standards and Science, by the Brain Research Program (NRF-2015M3C7A1029113) and the Bio & Medical Technology Development Program (2019M3A9F3065867 to C-HL) of the National Research Foundation (NRF) funded by the Ministry of Science and ICT of Korea.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions: YK Ryu, CH Lee, and KS Kim designed research; YK Ryu, HY Park, J Go, DH Choi, and YK Choi performed research; DH Choi and YK Choi contributed new reagents/analytic tools; YK Ryu, HY Park, J Go, M Rhee, and KS Kim analyzed data; and YK Ryu, CH Lee, and KS Kim wrote the paper.

Corresponding authors

Correspondence to Chul-Ho Lee or Kyoung-Shim Kim.

Ethics declarations

Ethics approval

All animal experiments were approved by the Institutional Animal Use and Care Committee of the Korea Research Institute of Bioscience and Biotechnology and mouse care and use was in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals (protocol number KRIBB-AEC-18014).

Consent for publication

All authors have read and approved the manuscript and consent to publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 3805 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, YK., Park, HY., Go, J. et al. Sodium phenylbutyrate reduces repetitive self-grooming behavior and rescues social and cognitive deficits in mouse models of autism. Psychopharmacology 238, 1833–1845 (2021). https://doi.org/10.1007/s00213-021-05812-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-021-05812-z

Keywords

Navigation