Skip to main content

Advertisement

Log in

Rottlerin, BDNF, and the impairment of inhibitory avoidance memory

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale and objective

As a eukaryotic elongation factor 2 kinase (eEF2K) inhibitor and a mitochondrial uncoupler, oncologists have extensively studied rottlerin. Neuroscientists, however, have accumulated scarce data on the role of rottlerin in affective and cognitive functions. Only two prior studies have, respectively, documented its antidepressant-like effect and how it impairs psychostimulant-supported memory. Whether or not rottlerin would affect aversive memory remains unknown. Hence, we sought to investigate the effects of rottlerin on aversive memory in the inhibitory avoidance (IA) task in mice.

Materials and methods

Male C57BL/6J mice were trained to acquire the IA task. Rottlerin (5 mg/kg, i.p. or 3 μg bilaterally in the hippocampus) or the vehicle was administered before footshock training (acquisition), after footshock training (consolidation), after the memory reactivation (reconsolidation), and before the test (retrieval) in the IA task.

Results

Systemic and intrahippocampal rottlerin impaired the acquisition, consolidation, and retrieval of IA memory, without affecting the reconsolidation process. Rottlerin (5 mg/kg, i.p.) induced a fast-onset and long-lasting increase in the brain-derived neurotrophic factor (BDNF) protein levels in the mouse hippocampus. Systemic injection of 7,8-dihydroxyflavone (7,8-DHF, 30 mg/kg), a BDNF tropomyosin receptor kinase B (TrkB) agonist impaired IA memory consolidation, and treatment with K252a (5 μg/kg), a Trk receptor antagonist, reversed the suppressing effect of rottlerin on IA memory consolidation.

Conclusion

Rottlerin impairs IA memory consolidation through the enhancement of BDNF signaling in the mouse hippocampus. Excessive brain BDNF levels can be detrimental to cognitive function. Rottlerin is likely to affect the original memory-associated neuroplasticity. Thus, it can be combined with exposure therapy to facilitate the forgetting of maladaptive aversive memory, such as post-traumatic stress disorder (PTSD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

IA:

Inhibitory avoidance

BDNF:

Brain-derived neurotrophic factor

eEF2K:

Eukaryotic elongation factor 2 kinase

mTOR:

Mammalian target of rapamycin

PKC:

Protein kinase C

TrkB:

Tropomyosin receptor kinase B

7,8-DHF:

7,8-Dihydroxyflavone

DMSO:

Dimethyl sulfoxide

PTSD:

Post-traumatic stress disorder

References

  • Alberini CM (2005) Mechanisms of memory stabilization: are consolidation and reconsolidation similar or distinct processes? Trends Neurosci 28:51–56

    CAS  PubMed  Google Scholar 

  • Alonso M, Vianna MR, Izquierdo I, Medina JH (2002) Signaling mechanisms mediating BDNF modulation of memory formation in vivo in the hippocampus. Cell Mol Neurobiol 22:663–674

    CAS  PubMed  Google Scholar 

  • Anokhin KV, Tiunova AA, Rose SP (2002) Reminder effects - reconsolidation or retrieval deficit? Pharmacological dissection with protein synthesis inhibitors following reminder for a passive-avoidance task in young chicks. Eur J Neurosci 15:1759–1765

    PubMed  Google Scholar 

  • Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475:91–95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bahi A, Boyer F, Chandrasekar V, Dreyer JL (2008) Role of accumbens BDNF and TrkB in cocaine-induced psychomotor sensitization, conditioned-place preference, and reinstatement in rats. Psychopharmacology (Berl) 199:169–182

    CAS  Google Scholar 

  • Barker JM, Taylor JR, De Vries TJ, Peters J (2015) Brain-derived neurotrophic factor and addiction: pathological versus therapeutic effects on drug seeking. Brain Res 1628:68–81

    CAS  PubMed  Google Scholar 

  • Bekinschtein P, Cammarota M, Katche C, Slipczuk L, Rossato JI, Goldin A, Izquierdo I, Medina JH (2008) BDNF is essential to promote persistence of long-term memory storage. Proc Natl Acad Sci U S A 105:2711–2716

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berglind WJ, See RE, Fuchs RA, Ghee SM, Whitfield TW Jr, Miller SW, McGinty JF (2007) A BDNF infusion into the medial prefrontal cortex suppresses cocaine seeking in rats. Eur J Neurosci 26:757–766

    PubMed  Google Scholar 

  • Berman DE, Dudai Y (2001) Memory extinction, learning anew, and learning the new: dissociations in the molecular machinery of learning in cortex. Science 291:2417–2419

    CAS  PubMed  Google Scholar 

  • Berman DE, Hazvi S, Stehberg J, Bahar A, Dudai Y (2003) Conflicting processes in the extinction of conditioned taste aversion: behavioral and molecular aspects of latency, apparent stagnation, and spontaneous recovery. Learn Mem 10:16–25

    PubMed  PubMed Central  Google Scholar 

  • Blaiss CA, Janak PH (2007) Post-training, but not post-reactivation, administration of amphetamine and anisomycin modulates Pavlovian conditioned approach. Neurobiol Learn Mem 87:644–658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cammarota M, Bevilaqua LR, Medina JH, Izquierdo I (2004) Retrieval does not induce reconsolidation of inhibitory avoidance memory. Learn Mem 11:572–578

    PubMed  PubMed Central  Google Scholar 

  • Cassini LF, Flavell CR, Amaral OB, Lee JLC (2017) On the transition from reconsolidation to extinction of contextual fear memories. Learn Mem 24:392–399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra R, Engeln M, Schiefer C, Patton MH, Martin JA, Werner CT, Riggs LM, Francis TC, McGlincy M, Evans B, Nam H, Das S, Girven K, Konkalmatt P, Gancarz AM, Golden SA, Iniguez SD, Russo SJ, Turecki G, Mathur BN, Creed M, Dietz DM, Lobo MK (2017) Drp1 mitochondrial fission in D1 neurons mediates behavioral and cellular plasticity during early cocaine abstinence. Neuron 96:1327–1341.e6

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen DY, Ho SH, Liang KC (2000) Startle responses to electric shocks: measurement of shock sensitivity and effects of morphine, buspirone and brain lesions. Chin J Physiol 43:35–47

    CAS  PubMed  Google Scholar 

  • Cirulli F, Berry A, Chiarotti F, Alleva E (2004) Intrahippocampal administration of BDNF in adult rats affects short-term behavioral plasticity in the Morris water maze and performance in the elevated plus-maze. Hippocampus 14:802–807

    CAS  PubMed  Google Scholar 

  • Croll SD, Suri C, Compton DL, Simmons MV, Yancopoulos GD, Lindsay RM, Wiegand SJ, Rudge JS, Scharfman HE (1999) Brain-derived neurotrophic factor transgenic mice exhibit passive avoidance deficits, increased seizure severity and in vitro hyperexcitability in the hippocampus and entorhinal cortex. Neuroscience 93:1491–1506

    CAS  PubMed  Google Scholar 

  • Cunha C, Angelucci A, D'Antoni A, Dobrossy MD, Dunnett SB, Berardi N, Brambilla R (2009) Brain-derived neurotrophic factor (BDNF) overexpression in the forebrain results in learning and memory impairments. Neurobiol Dis 33:358–368

    CAS  PubMed  Google Scholar 

  • Cunha C, Brambilla R, Thomas KL (2010) A simple role for BDNF in learning and memory? Front Mol Neurosci 3:1

    PubMed  PubMed Central  Google Scholar 

  • Eisenberg M, Kobilo T, Berman DE, Dudai Y (2003) Stability of retrieved memory: inverse correlation with trace dominance. Science 301:1102–1104

    CAS  PubMed  Google Scholar 

  • Fan HY, Cherng CG, Yang FY, Cheng LY, Tsai CJ, Lin LC, Yu L (2010) Systemic treatment with protein synthesis inhibitors attenuates the expression of cocaine memory. Behav Brain Res 208:522–527

    CAS  PubMed  Google Scholar 

  • Gehani NC, Nalwalk JW, Razdan RK, Martin BR, Sun X, Wentland M, Abood ME, Hough LB (2007) Significance of cannabinoid CB1 receptors in improgan antinociception. J Pain 8:850–860

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geisler JG, Marosi K, Halpern J, Mattson MP (2017) DNP, mitochondrial uncoupling, and neuroprotection: A little dabʼll do ya. Alzheimers Dement 13:582–591

    PubMed  Google Scholar 

  • Ghitza UE, Zhai H, Wu P, Airavaara M, Shaham Y, Lu L (2010) Role of BDNF and GDNF in drug reward and relapse: a review. Neurosci Biobehav Rev 35:157–171

    CAS  PubMed  Google Scholar 

  • Graham DL, Edwards S, Bachtell RK, DiLeone RJ, Rios M, Self DW (2007) Dynamic BDNF activity in nucleus accumbens with cocaine use increases self-administration and relapse. Nat Neurosci 10:1029–1037

    CAS  PubMed  Google Scholar 

  • Graham DL, Krishnan V, Larson EB, Graham A, Edwards S, Bachtell RK, Simmons D, Gent LM, Berton O, Bolanos CA, DiLeone RJ, Parada LF, Nestler EJ, Self DW (2009) Tropomyosin-related kinase B in the mesolimbic dopamine system: region-specific effects on cocaine reward. Biol Psychiatry 65:696–701

    CAS  PubMed  Google Scholar 

  • Gschwendt M, Kittstein W, Marks F (1994a) Elongation factor-2 kinase: effective inhibition by the novel protein kinase inhibitor rottlerin and relative insensitivity towards staurosporine. FEBS Lett 338:85–88

    CAS  PubMed  Google Scholar 

  • Gschwendt M, Muller HJ, Kielbassa K, Zang R, Kittstein W, Rincke G, Marks F (1994b) Rottlerin, a novel protein kinase inhibitor. Biochem Biophys Res Commun 199:93–98

    CAS  PubMed  Google Scholar 

  • Hall J, Thomas KL, Everitt BJ (2000) Rapid and selective induction of BDNF expression in the hippocampus during contextual learning. Nat Neurosci 3:533–535

    CAS  PubMed  Google Scholar 

  • Hastings MH, Gauthier JM, Mabry K, Tran A, Man HY, Kantak KM (2020) Facilitative effects of environmental enrichment for cocaine relapse prevention are dependent on extinction training context and involve increased TrkB signaling in dorsal hippocampus and ventromedial prefrontal cortex. Behav Brain Res 386:112596

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hough LB, Svokos K, Nalwalk JW (2009) Non-opioid antinociception produced by brain stem injections of improgan: significance of local, but not cross-regional, cannabinoid mechanisms. Brain Res 1247:62–70

    CAS  PubMed  Google Scholar 

  • Hsiung MH, Huang WL, Kan LY, Chen LH, Hu SS (2020) The facilitating effect of MK-801 on inhibitory avoidance memory via mTOR signaling in the mouse hippocampus. Behav Brain Res 389: 112630

  • Hu SS, Liu YW, Yu L (2015) Medial prefrontal cannabinoid CB1 receptors modulate consolidation and extinction of cocaine-associated memory in mice. Psychopharmacology (Berl) 232:1803–1815

    CAS  Google Scholar 

  • Kharait S, Dhir R, Lauffenburger D, Wells A (2006) Protein kinase Cdelta signaling downstream of the EGF receptor mediates migration and invasiveness of prostate cancer cells. Biochem Biophys Res Commun 343:848–856

    CAS  PubMed  Google Scholar 

  • Kongsuphol P, Mukda S, Nopparat C, Villarroel A, Govitrapong P (2009) Melatonin attenuates methamphetamine-induced deactivation of the mammalian target of rapamycin signaling to induce autophagy in SK-N-SH cells. J Pineal Res 46:199–206

    CAS  PubMed  Google Scholar 

  • Kontny E, Kurowska M, Szczepanska K, Maslinski W (2000) Rottlerin, a PKC isozyme-selective inhibitor, affects signaling events and cytokine production in human monocytes. J Leukoc Biol 67:249–258

    CAS  PubMed  Google Scholar 

  • Kumar D, Shankar S, Srivastava RK (2014) Rottlerin induces autophagy and apoptosis in prostate cancer stem cells via PI3K/Akt/mTOR signaling pathway. Cancer Lett 343:179–189

    CAS  PubMed  Google Scholar 

  • Kuo YM, Liang KC, Chen HH, Cherng CG, Lee HT, Lin Y, Huang AM, Liao RM, Yu L (2007) Cocaine-but not methamphetamine-associated memory requires de novo protein synthesis. Neurobiol Learn Mem 87:93–100

    CAS  PubMed  Google Scholar 

  • Lai YT, Fan HY, Cherng CG, Chiang CY, Kao GS, Yu L (2008) Activation of amygdaloid PKC pathway is necessary for conditioned cues-provoked cocaine memory performance. Neurobiol Learn Mem 90:164–170

    CAS  PubMed  Google Scholar 

  • Lee JL (2010) Memory reconsolidation mediates the updating of hippocampal memory content. Front Behav Neurosci 4:168

    PubMed  PubMed Central  Google Scholar 

  • Lee JL, Hynds RE (2013) Divergent cellular pathways of hippocampal memory consolidation and reconsolidation. Hippocampus 23:233–244

    CAS  PubMed  Google Scholar 

  • Lee JL, Everitt BJ, Thomas KL (2004) Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science 304:839–843

    CAS  PubMed  Google Scholar 

  • Lee JL, Gardner RJ, Butler VJ, Everitt BJ (2009) D-cycloserine potentiates the reconsolidation of cocaine-associated memories. Learn Mem 16:82–85

    PubMed  PubMed Central  Google Scholar 

  • Li X, Wolf ME (2015) Multiple faces of BDNF in cocaine addiction. Behav Brain Res 279:240–254

    CAS  PubMed  Google Scholar 

  • Li Y, Hu Z, Chen B, Bu Q, Lu W, Deng Y, Zhu R, Shao X, Hou J, Zhao J, Li H, Zhang B, Huang Y, Lv L, Zhao Y, Cen X (2012) Taurine attenuates methamphetamine-induced autophagy and apoptosis in PC12 cells through mTOR signaling pathway. Toxicol Lett 215:1–7

    CAS  PubMed  Google Scholar 

  • Liao TY, Tzeng WY, Wu HH, Cherng CG, Wang CY, Hu SS, Yu L (2016) Rottlerin impairs the formation and maintenance of psychostimulant-supported memory. Psychopharmacology (Berl) 233:1455–1465

    CAS  Google Scholar 

  • Liu D, Zhang Y, Gharavi R, Park HR, Lee J, Siddiqui S, Telljohann R, Nassar MR, Cutler RG, Becker KG, Mattson MP (2015) The mitochondrial uncoupler DNP triggers brain cell mTOR signaling network reprogramming and CREB pathway up-regulation. J Neurochem 134:677–692

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu L, Dempsey J, Liu SY, Bossert JM, Shaham Y (2004) A single infusion of brain-derived neurotrophic factor into the ventral tegmental area induces long-lasting potentiation of cocaine seeking after withdrawal. J Neurosci 24:1604–1611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu QY, Zhang L, Lugea A, Moro A, Edderkaoui M, Eibl G, Pandol SJ, Go VL (2013) Determination of Rottlerin, a Natural Protein Kinases C Inhibitor, in Pancreatic Cancer Cells and Mouse Xenografts by RP-HPLC Method. J Chromatogr Sep Tech 4: 100062

  • Lu W, Lin C, Li Y (2014) Rottlerin induces Wnt co-receptor LRP6 degradation and suppresses both Wnt/beta-catenin and mTORC1 signaling in prostate and breast cancer cells. Cell Signal 26:1303–1309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lujan MA, Castro-Zavala A, Alegre-Zurano L, Valverde O (2018) Repeated Cannabidiol treatment reduces cocaine intake and modulates neural proliferation and CB1R expression in the mouse hippocampus. Neuropharmacology 143:163–175

    CAS  PubMed  Google Scholar 

  • Maioli E, Torricelli C, Valacchi G (2012) Rottlerin and cancer: novel evidence and mechanisms. ScientificWorldJournal 2012:350826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Markham A, Bains R, Franklin P, Spedding M (2014) Changes in mitochondrial function are pivotal in neurodegenerative and psychiatric disorders: how important is BDNF? Br J Pharmacol 171:2206–2229

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGaugh JL (2000) Memory--a century of consolidation. Science 287:248–251

    CAS  PubMed  Google Scholar 

  • McGinty JF, Whitfield TW Jr, Berglind WJ (2010) Brain-derived neurotrophic factor and cocaine addiction. Brain Res 1314:183–193

    CAS  PubMed  Google Scholar 

  • McKenzie S, Eichenbaum H (2011) Consolidation and reconsolidation: two lives of memories? Neuron 71:224–233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Milekic MH, Alberini CM (2002) Temporally graded requirement for protein synthesis following memory reactivation. Neuron 36:521–525

    CAS  PubMed  Google Scholar 

  • Milekic MH, Brown SD, Castellini C, Alberini CM (2006) Persistent disruption of an established morphine conditioned place preference. J Neurosci 26:3010–3020

    CAS  PubMed  PubMed Central  Google Scholar 

  • Milekic MH, Pollonini G, Alberini CM (2007) Temporal requirement of C/EBPbeta in the amygdala following reactivation but not acquisition of inhibitory avoidance. Learn Mem 14:504–511

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller CA, Sweatt JD (2006) Amnesia or retrieval deficit? Implications of a molecular approach to the question of reconsolidation. Learn Mem 13:498–505

    CAS  PubMed  Google Scholar 

  • Misanin JR, Miller RR, Lewis DJ (1968) Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace. Science 160:554–555

    CAS  PubMed  Google Scholar 

  • Mizuno M, Yamada K, Olariu A, Nawa H, Nabeshima T (2000) Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. J Neurosci 20:7116–7121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monfils MH, Cowansage KK, Klann E, LeDoux JE (2009) Extinction-reconsolidation boundaries: key to persistent attenuation of fear memories. Science 324:951–955

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morioka N, Yoshida Y, Nakamura Y, Hidaka N, Hisaoka-Nakashima K, Nakata Y (2013) The regulation of exon-specific brain-derived neurotrophic factor mRNA expression by protein kinase C in rat cultured dorsal root ganglion neurons. Brain Res 1509:20–31

    CAS  PubMed  Google Scholar 

  • Mu JS, Li WP, Yao ZB, Zhou XF (1999) Deprivation of endogenous brain-derived neurotrophic factor results in impairment of spatial learning and memory in adult rats. Brain Res 835:259–265

    CAS  PubMed  Google Scholar 

  • Nader K, Schafe GE, Le Doux JE (2000a) Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406:722–726

    CAS  PubMed  Google Scholar 

  • Nader K, Schafe GE, LeDoux JE (2000b) The labile nature of consolidation theory. Nat Rev Neurosci 1:216–219

    CAS  PubMed  Google Scholar 

  • Nitti M, d'Abramo C, Traverso N, Verzola D, Garibotto G, Poggi A, Odetti P, Cottalasso D, Marinari UM, Pronzato MA, Domenicotti C (2005) Central role of PKCdelta in glycoxidation-dependent apoptosis of human neurons. Free Radic Biol Med 38:846–856

    CAS  PubMed  Google Scholar 

  • Otis JM, Fitzgerald MK, Mueller D (2014) Infralimbic BDNF/TrkB enhancement of GluN2B currents facilitates extinction of a cocaine-conditioned place preference. J Neurosci 34:6057–6064

    PubMed  PubMed Central  Google Scholar 

  • Patterson SL, Abel T, Deuel TA, Martin KC, Rose JC, Kandel ER (1996) Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16:1137–1145

    CAS  PubMed  Google Scholar 

  • Paxinos G, Franklin K (2013) The mouse brain in stereotaxic coordinates, fourth edition. Elsevier Inc., San Diego, CA, USA

  • Peters J, Dieppa-Perea LM, Melendez LM, Quirk GJ (2010) Induction of fear extinction with hippocampal-infralimbic BDNF. Science 328:1288–1290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Przybyslawski J, Roullet P, Sara SJ (1999) Attenuation of emotional and nonemotional memories after their reactivation: role of beta adrenergic receptors. J Neurosci 19:6623–6628

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rattiner LM, Davis M, French CT, Ressler KJ (2004) Brain-derived neurotrophic factor and tyrosine kinase receptor B involvement in amygdala-dependent fear conditioning. J Neurosci 24:4796–4806

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reichelt AC, Lee JL (2013) Memory reconsolidation in aversive and appetitive settings. Front Behav Neurosci 7:118

    PubMed  PubMed Central  Google Scholar 

  • Rosas-Vidal LE, Do-Monte FH, Sotres-Bayon F, Quirk GJ (2014) Hippocampal--prefrontal BDNF and memory for fear extinction. Neuropsychopharmacology 39:2161–2169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sara SJ (2000) Retrieval and reconsolidation: toward a neurobiology of remembering. Learn Mem 7:73–84

    CAS  PubMed  Google Scholar 

  • Shen F, Meredith GE, Napier TC (2006) Amphetamine-induced place preference and conditioned motor sensitization requires activation of tyrosine kinase receptors in the hippocampus. J Neurosci 26:11041–11051

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shin EJ, Nam Y, Tu TH, Lim YK, Wie MB, Kim DJ, Jeong JH, Kim HC (2016) Protein kinase Cdelta mediates trimethyltin-induced neurotoxicity in mice in vivo via inhibition of glutathione defense mechanism. Arch Toxicol 90:937–953

    CAS  PubMed  Google Scholar 

  • Singh BN, Kumar D, Shankar S, Srivastava RK (2012) Rottlerin induces autophagy which leads to apoptotic cell death through inhibition of PI3K/Akt/mTOR pathway in human pancreatic cancer stem cells. Biochem Pharmacol 84:1154–1163

    CAS  PubMed  Google Scholar 

  • Soltoff SP (2001) Rottlerin is a mitochondrial uncoupler that decreases cellular ATP levels and indirectly blocks protein kinase Cdelta tyrosine phosphorylation. J Biol Chem 276:37986–37992

    CAS  PubMed  Google Scholar 

  • Soltoff SP (2007) Rottlerin: an inappropriate and ineffective inhibitor of PKCdelta. Trends Pharmacol Sci 28:453–458

    CAS  PubMed  Google Scholar 

  • Stucky A, Bakshi KP, Friedman E, Wang HY (2016) Prenatal Cocaine exposure upregulates BDNF-TrkB signaling. PLoS One 11:e0160585

    PubMed  PubMed Central  Google Scholar 

  • Suzuki A, Josselyn SA, Frankland PW, Masushige S, Silva AJ, Kida S (2004) Memory reconsolidation and extinction have distinct temporal and biochemical signatures. J Neurosci 24:4787–4795

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taubenfeld SM, Milekic MH, Monti B, Alberini CM (2001) The consolidation of new but not reactivated memory requires hippocampal C/EBPbeta. Nat Neurosci 4:813–818

    CAS  PubMed  Google Scholar 

  • Torricelli C, Daveri E, Salvadori S, Valacchi G, Ietta F, Muscettola M, Carlucci F, Maioli E (2015) Phosphorylation-independent mTORC1 inhibition by the autophagy inducer Rottlerin. Cancer Lett 360:17–27

    CAS  PubMed  Google Scholar 

  • Tronel S, Milekic MH, Alberini CM (2005) Linking new information to a reactivated memory requires consolidation and not reconsolidation mechanisms. PLoS Biol 3:e293

    PubMed  PubMed Central  Google Scholar 

  • Tzeng WY, Chuang JY, Lin LC, Cherng CG, Lin KY, Chen LH, Su CC, Yu L (2013) Companions reverse stressor-induced decreases in neurogenesis and cocaine conditioning possibly by restoring BDNF and NGF levels in dentate gyrus. Psychoneuroendocrinology 38:425–437

    CAS  PubMed  Google Scholar 

  • Valjent E, Corbille AG, Bertran-Gonzalez J, Herve D, Girault JA (2006) Inhibition of ERK pathway or protein synthesis during reexposure to drugs of abuse erases previously learned place preference. Proc Natl Acad Sci U S A 103:2932–2937

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vianna MR, Szapiro G, McGaugh JL, Medina JH, Izquierdo I (2001) Retrieval of memory for fear-motivated training initiates extinction requiring protein synthesis in the rat hippocampus. Proc Natl Acad Sci U S A 98:12251–12254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Luo YX, He YY, Li FQ, Shi HS, Xue LF, Xue YX, Lu L (2010) Nucleus accumbens core mammalian target of rapamycin signaling pathway is critical for cue-induced reinstatement of cocaine seeking in rats. J Neurosci 30:12632–12641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan QS, Zheng SZ, Yan SE (2004) Prenatal cocaine exposure decreases brain-derived neurotrophic factor proteins in the rat brain. Brain Res 1009:228–233

    CAS  PubMed  Google Scholar 

  • Ying SW, Futter M, Rosenblum K, Webber MJ, Hunt SP, Bliss TV, Bramham CR (2002) Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J Neurosci 22:1532–1540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Anantharam V, Kanthasamy A, Kanthasamy AG (2007) Neuroprotective effect of protein kinase C delta inhibitor rottlerin in cell culture and animal models of Parkinson's disease. J Pharmacol Exp Ther 322:913–922

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Keng-Chen Liang and Der-Yow Chen for their generous help with the fear-potentiated startle experiment. We thank Li-Yu Kan and all of the Hu lab members for technical assistance.

Funding

This work was supported by the ROC Ministry of Science and Technology (MOST) grant Nos. 104-2410-H-006-025-MY3, 105-2410-H-006-019-MY2, and 107-2410-H-006-056- to SSH.

Author information

Authors and Affiliations

Authors

Contributions

Wan-Ling Huang: project administration, resources, validation, investigation.

Ming-Heng Hsiung: project administration, formal analysis, investigation.

Wen Dai: validation, investigation.

Sherry Shu-Jung Hu: funding acquisition, writing—review and editing, writing—original draft, supervision, conceptualization.

Corresponding author

Correspondence to Sherry Shu-Jung Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, WL., Hsiung, MH., Dai, W. et al. Rottlerin, BDNF, and the impairment of inhibitory avoidance memory. Psychopharmacology 238, 421–439 (2021). https://doi.org/10.1007/s00213-020-05690-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-020-05690-x

Keywords

Navigation