Skip to main content
Log in

Auditory cognitive training improves prepulse inhibition in serine racemase mutant mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Evidence indicates that neuroplasticity-based cognitive training can improve cognition in patients with schizophrenia, but the individual response to training varies greatly between subjects. Hence, there is a need to understand the neurological underpinnings of cognitive training to reveal predictors of treatment response. d-serine is a crucial modulator of neuroplasticity, and decreased levels of d-serine may contribute to deficits in neuroplasticity in schizophrenia. Interestingly, we observed that training mice to identify auditory oddballs increased extracellular levels of d-serine in the hippocampus during training. Serine racemase (Srr) is the only source of brain d-serine; thus, it is possible that Srr may mediate the response to training. To test this hypothesis, we trained mice that have a mutated version of Srr (SrrY269*/SrrY269*) and reduced levels of d-serine in the same auditory training. SrrY269*/SrrY269* mice showed decreased performance during auditory training (defined as the capacity to discriminate an oddball during a sequence of tones). Importantly, auditory training improved prepulse inhibition (PPI) in SrrY269*/SrrY269* but not in wild-type mice. Finally, d-serine (100 mg/kg i.p.) given 30 min before training sessions to SrrY269*/SrrY269* mice improved training performance, but it did not enhance PPI. Taken together, our results show that d-serine is involved in the response to neuroplasticity-based auditory training and that PPI deficits can be improved by auditory oddball training even in the presence of neuroplasticity deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5
Fig. 6.

Similar content being viewed by others

Abbreviations

NMDAR:

N-methyl-d-aspartate receptor

Srr:

Serine racemase

PPI:

Prepulse inhibition

MMN:

Mismatch negativity

References

  • Abel K, Waikar M, Pedro B et al (1998) Repeated testing of prepulse inhibition and habituation of the startle reflex: a study in healthy human controls. J Psychopharmacol 12:330–337

    CAS  PubMed  Google Scholar 

  • Aubert L, Reiss D, Ouagazzal A-M (2006) Auditory and visual prepulse inhibition in mice: parametric analysis and strain comparisons. Genes Brain Behav 5:423–431

    CAS  PubMed  Google Scholar 

  • Bado P, Madeira C, Vargas-Lopes C et al (2011) Effects of low-dose D-serine on recognition and working memory in mice. Psychopharmacology 218:461–470

    CAS  PubMed  Google Scholar 

  • Bak N, Mann J, Fagerlund B et al (2017) Testing a decades’ old assumption: are individuals with lower sensory gating indeed more easily distracted? Psychiatry Res 255:387–393

    CAS  PubMed  Google Scholar 

  • Balu DT, Li Y, Puhl MD et al (2013) Multiple risk pathways for schizophrenia converge in serine racemase knockout mice, a mouse model of NMDA receptor hypofunction. Proc Natl Acad Sci U S A 110:E2400–E2409

    CAS  PubMed  PubMed Central  Google Scholar 

  • Basu AC, Tsai GE, Ma C-L et al (2009) Targeted disruption of serine racemase affects glutamatergic neurotransmission and behavior. Mol Psychiatry 14:719–727

    CAS  PubMed  Google Scholar 

  • Bendikov I, Nadri C, Amar S et al (2007) A CSF and postmortem brain study of D-serine metabolic parameters in schizophrenia. Schizophr Res 90:41–51

    PubMed  Google Scholar 

  • Braff DL, Swerdlow NR, Geyer MA (1999) Symptom correlates of prepulse inhibition deficits in male schizophrenic patients. Am J Psychiatry 156:596–602

    CAS  PubMed  Google Scholar 

  • Cain CK, McCue M, Bello I et al (2014) d-Cycloserine augmentation of cognitive remediation in schizophrenia. Schizophr Res 153:177–183

    PubMed  PubMed Central  Google Scholar 

  • Calcia MA, Madeira C, Alheira FV et al (2012) Plasma levels of D-serine in Brazilian individuals with schizophrenia. Schizophr Res 142:83–87

    PubMed  Google Scholar 

  • Cavuş I, Reinhart RMG, Roach BJ et al (2012) Impaired visual cortical plasticity in schizophrenia. Biol Psychiatry 71:512–520

    PubMed  PubMed Central  Google Scholar 

  • Cho S-E, Na K-S, Cho S-J, Kang SG (2016) Low d-serine levels in schizophrenia: a systematic review and meta-analysis. Neurosci Lett 634:42–51

    CAS  PubMed  Google Scholar 

  • Chou H-H, Twamley E, Swerdlow NR (2012) Towards medication-enhancement of cognitive interventions in schizophrenia. Handb Exp Pharmacol 81–111

  • Clemenson GD, Deng W, Gage FH (2015) Environmental enrichment and neurogenesis: from mice to humans. Curr Opin Behav Sci 4:56–62

    Google Scholar 

  • Couillard-Despres S, Winner B, Schaubeck S et al (2005) Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci 21:1–14

    PubMed  Google Scholar 

  • Curzon P, Zhang M, Radek RJ, Fox GB (2011) The Behavioral assessment of sensorimotor processes in the mouse: acoustic startle, sensory gating, locomotor activity, rotarod, and beam walking. In: Buccafusco JJ (ed) Methods of Behavior Analysis in Neuroscience. CRC Press/Taylor & Francis, Boca Raton

    Google Scholar 

  • Daskalakis ZJ, Christensen BK, Fitzgerald PB, Chen R (2008) Dysfunctional neural plasticity in patients with schizophrenia. Arch Gen Psychiatry 65:378–385

    PubMed  Google Scholar 

  • Erickson MA, Ruffle A, Gold JM (2016) A meta-analysis of mismatch negativity in schizophrenia: from clinical risk to disease specificity and progression. Biol Psychiatry 79:980–987

    PubMed  Google Scholar 

  • Faul F, Erdfelder E, Lang A-G, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191

    Google Scholar 

  • Föcking M, Lopez LM, English JA et al (2015) Proteomic and genomic evidence implicates the postsynaptic density in schizophrenia. Mol Psychiatry 20:424–432

    PubMed  Google Scholar 

  • Guercio GD, Bevictori L, Vargas-Lopes C et al (2014) D-serine prevents cognitive deficits induced by acute stress. Neuropharmacology 86:1–8

    CAS  PubMed  Google Scholar 

  • Guercio GD, Panizzutti R (2018) Potential and challenges for the clinical use of d-serine as a cognitive enhancer. Front Psychiatry 9:14

    PubMed  PubMed Central  Google Scholar 

  • Guercio GD, Thomas ME, Cisneros-Franco JM et al (2018) Improving cognitive training for schizophrenia using neuroplasticity enhancers: lessons from decades of basic and clinical research. Schizophr Res. https://doi.org/10.1016/j.schres.2018.04.028

  • Hashimoto A, Nishikawa T, Hayashi T et al (1992) The presence of free D-serine in rat brain. FEBS Lett 296:33–36

    CAS  PubMed  Google Scholar 

  • Hashimoto K, Engberg G, Shimizu E et al (2005) Reduced D-serine to total serine ratio in the cerebrospinal fluid of drug naive schizophrenic patients. Prog Neuro-Psychopharmacol Biol Psychiatry 29:767–769

    CAS  Google Scholar 

  • Hashimoto K, Fukushima T, Shimizu E et al (2003) Decreased serum levels of D-serine in patients with schizophrenia: evidence in support of the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia. Arch Gen Psychiatry 60:572–576

    CAS  PubMed  Google Scholar 

  • Ira E, Zanoni M, Ruggeri M et al (2013) COMT, neuropsychological function and brain structure in schizophrenia: a systematic review and neurobiological interpretation. J Psychiatry Neurosci 38:366–380

    PubMed  PubMed Central  Google Scholar 

  • Javitt DC, Steinschneider M, Schroeder CE, Arezzo JC (1996) Role of cortical N-methyl-D-aspartate receptors in auditory sensory memory and mismatch negativity generation: implications for schizophrenia. Proc Natl Acad Sci U S A 93:11962–11967

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kakegawa W, Miyoshi Y, Hamase K et al (2011) D-serine regulates cerebellar LTD and motor coordination through the δ2 glutamate receptor. Nat Neurosci 14:603–611

    CAS  PubMed  Google Scholar 

  • Kandel ER, Dudai Y, Mayford MR (2014) The molecular and systems biology of memory. Cell 157:163–186

    CAS  PubMed  Google Scholar 

  • Kantrowitz JT, Epstein ML, Beggel O et al (2016) Neurophysiological mechanisms of cortical plasticity impairments in schizophrenia and modulation by the NMDA receptor agonist D-serine. Brain 139:3281–3295

    PubMed  PubMed Central  Google Scholar 

  • Kantrowitz JT, Epstein ML, Lee M et al (2018) Improvement in mismatch negativity generation during d-serine treatment in schizophrenia: Correlation with symptoms. Schizophr Res 191:70–79

    PubMed  Google Scholar 

  • Karper LP, Freeman GK, Grillon C et al (1996) Preliminary evidence of an association between sensorimotor gating and distractibility in psychosis. J Neuropsychiatr Clin Neurosci 8:60–66

    CAS  Google Scholar 

  • Kohl S, Heekeren K, Klosterkötter J, Kuhn J (2013) Prepulse inhibition in psychiatric disorders—apart from schizophrenia. J Psychiatr Res 47:445–452

    CAS  PubMed  Google Scholar 

  • Kumari V, Peters ER, Fannon D et al (2008) Uncontrollable voices and their relationship to gating deficits in schizophrenia. Schizophr Res 101:185–194

    PubMed  PubMed Central  Google Scholar 

  • Labrie V, Fukumura R, Rastogi A et al (2009) Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model. Hum Mol Genet 18:3227–3243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lane H-Y, Lin C-H, Green MF et al (2013) Add-on treatment of benzoate for schizophrenia: a randomized, double-blind, placebo-controlled trial of D-amino acid oxidase inhibitor. JAMA Psychiatry 70:1267–1275

    CAS  PubMed  Google Scholar 

  • Lee S-H, Sung K, Lee K-S et al (2014) Mismatch negativity is a stronger indicator of functional outcomes than neurocognition or theory of mind in patients with schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 48:213–219

    Google Scholar 

  • Lin C-Y, Liang S-Y, Chang Y-C et al (2017) Adjunctive sarcosine plus benzoate improved cognitive function in chronic schizophrenia patients with constant clinical symptoms: A randomised, double-blind, placebo-controlled trial. World J Biol Psychiatry 18:357–368

    PubMed  Google Scholar 

  • Maekawa M, Takashima N, Matsumata M et al (2009) Arachidonic acid drives postnatal neurogenesis and elicits a beneficial effect on prepulse inhibition, a biological trait of psychiatric illnesses. PLoS One 4:e5085

    PubMed  PubMed Central  Google Scholar 

  • Ma TM, Abazyan S, Abazyan B et al (2013) Pathogenic disruption of DISC1-serine racemase binding elicits schizophrenia-like behavior via D-serine depletion. Mol Psychiatry 18:557–567

    CAS  PubMed  Google Scholar 

  • McGurk SR, Twamley EW, Sitzer DI et al (2007) A meta-analysis of cognitive remediation in schizophrenia. Am J Psychiatry 164:1791–1802

    PubMed  PubMed Central  Google Scholar 

  • Minassian A, Feifel D, Perry W (2007) The relationship between sensorimotor gating and clinical improvement in acutely ill schizophrenia patients. Schizophr Res 89:225–231

    PubMed  Google Scholar 

  • Mishra J, de Villers-Sidani E, Merzenich M, Gazzaley A (2014) Adaptive training diminishes distractibility in aging across species. Neuron 84:1091–1103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morita Y, Ujike H, Tanaka Y et al (2007) A genetic variant of the serine racemase gene is associated with schizophrenia. Biol Psychiatry 61:1200–1203

    CAS  PubMed  Google Scholar 

  • Panizzutti R, Fisher M, Garrett C et al (2019) Association between increased serum d-serine and cognitive gains induced by intensive cognitive training in schizophrenia. Schizophr Res 207:63–69

    PubMed  Google Scholar 

  • Panizzutti R, Hamilton SP, Vinogradov S (2013) Genetic correlate of cognitive training response in schizophrenia. Neuropharmacology 64:264–267

    CAS  PubMed  Google Scholar 

  • Papouin T, Ladépêche L, Ruel J et al (2012) Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell 150:633–646

    CAS  PubMed  Google Scholar 

  • Paxinos G, and Franklin KBJ. (2001) The mouse brain in stereotaxic coordinates: hard cover edition. Access Online via Elsevier.

  • Robin LM, Oliveira da Cruz JF, Langlais VC et al (2018) Astroglial CB1 receptors determine synaptic D-serine availability to enable recognition memory. Neuron 98:935–944.e5

    CAS  PubMed  Google Scholar 

  • Rohleder C, Wiedermann D, Neumaier B et al (2016) The functional networks of prepulse inhibition: neuronal connectivity analysis based on FDG-PET in awake and unrestrained rats. Front Behav Neurosci 10:148

    PubMed  PubMed Central  Google Scholar 

  • Rosburg T, Kreitschmann-Andermahr I (2016) The effects of ketamine on the mismatch negativity (MMN) in humans - A meta-analysis. Clin Neurophysiol 127:1387–1394

    PubMed  Google Scholar 

  • Schell MJ, Brady RO Jr, Molliver ME, Snyder SH (1997) D-serine as a neuromodulator: regional and developmental localizations in rat brain glia resemble NMDA receptors. J Neurosci 17:1604–1615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Squire LR, Genzel L, Wixted JT, Morris RG (2015) Memory consolidation. Cold Spring Harb Perspect Biol 7:a021766

    PubMed  PubMed Central  Google Scholar 

  • Swerdlow NR, Braff DL, Geyer MA (2016) Sensorimotor gating of the startle reflex: what we said 25 years ago, what has happened since then, and what comes next. J Psychopharmacol 30:1072–1081

    PubMed  PubMed Central  Google Scholar 

  • Swerdlow NR, Light GA, Sprock J et al (2014) Deficient prepulse inhibition in schizophrenia detected by the multi-site COGS. Schizophr Res 152:503–512

    PubMed  PubMed Central  Google Scholar 

  • Vargas-Lopes C, Madeira C, Kahn SA et al (2011) Protein kinase C activity regulates D-serine availability in the brain. J Neurochem 116:281–290

    CAS  PubMed  Google Scholar 

  • Vinogradov S, Fisher M, de Villers-Sidani E (2012) Cognitive training for impaired neural systems in neuropsychiatric illness. Neuropsychopharmacology 37:43–76

    PubMed  Google Scholar 

  • Voss P, Thomas ME, Guercio GD, de Villers-Sidani E (2019) Dysregulation of auditory neuroplasticity in schizophrenia. Schizophr Res 207:3–11

    PubMed  Google Scholar 

  • Wiegand A, Nieratschker V, Plewnia C (2016) Genetic modulation of transcranial direct current stimulation effects on cognition. Front Hum Neurosci 10:651

    PubMed  PubMed Central  Google Scholar 

  • Wu MF, Krueger J, Ison JR, Gerrard RL (1984) Startle reflex inhibition in the rat: its persistence after extended repetition of the inhibitory stimulus. J Exp Psychol Anim Behav Process 10:221–228

    CAS  PubMed  Google Scholar 

  • Wykes T, Huddy V, Cellard C et al (2011) A meta-analysis of cognitive remediation for schizophrenia: methodology and effect sizes. Am J Psychiatry 168:472–485

    PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), and Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerson D. Guercio.

Ethics declarations

All animal work adhered to procedural protocols approved by the ethics committee of our institution.

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

• Oddball auditory training increases extracellular d-serine levels in the hippocampus.

•Mutated serine racemase impairs performance in the auditory training.

• Auditory training improves non-trained PPI responses.

Electronic supplementary materials

ESM 1

(PNG 588 kb)

ESM 2

(PNG 49 kb)

ESM 3

(PNG 407 kb

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guercio, G.D., Anjos-Travassos, Y., Rangel, I. et al. Auditory cognitive training improves prepulse inhibition in serine racemase mutant mice. Psychopharmacology 237, 2499–2508 (2020). https://doi.org/10.1007/s00213-020-05549-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-020-05549-1

Keywords

Navigation