Skip to main content
Log in

Central norepinephrine transmission is required for stress-induced repetitive behavior in two rodent models of obsessive-compulsive disorder

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Obsessive-compulsive disorder (OCD) is characterized by repetitive behaviors exacerbated by stress. Many OCD patients do not respond to available pharmacotherapies, but neurosurgical ablation of the anterior cingulate cortex (ACC) can provide symptomatic relief. Although the ACC receives noradrenergic innervation and expresses adrenergic receptors (ARs), the involvement of norepinephrine (NE) in OCD has not been investigated.

Objective

To determine the effects of genetic or pharmacological disruption of NE neurotransmission on marble burying (MB) and nestlet shredding (NS), two animal models of OCD.

Methods

We assessed NE-deficient (Dbh −/−) mice and NE-competent (Dbh +/−) controls in MB and NS tasks. We also measured the effects of anti-adrenergic drugs on NS and MB in control mice and the effects of pharmacological restoration of central NE in Dbh −/− mice. Finally, we compared c-fos induction in the locus coeruleus (LC) and ACC of Dbh −/− and control mice following both tasks.

Results

Dbh −/− mice virtually lacked MB and NS behaviors seen in control mice but did not differ in the elevated zero maze (EZM) model of general anxiety-like behavior. Pharmacological restoration of central NE synthesis in Dbh −/− mice completely rescued NS behavior, while NS and MB were suppressed in control mice by anti-adrenergic drugs. Expression of c-fos in the ACC was attenuated in Dbh −/− mice after MB and NS.

Conclusion

These findings support a role for NE transmission to the ACC in the expression of stress-induced compulsive behaviors and suggest further evaluation of anti-adrenergic drugs for OCD is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abraham PA, Xing G, Zhang L, Eric ZY, Post R, Gamble EH, Li H (2008) β1-and β2-adrenoceptor induced synaptic facilitation in rat basolateral amygdala. Brain Res 1209:65–73

    CAS  PubMed  Google Scholar 

  • Adams TG, Kelmendi B, Brake CA, Gruner P, Badour CL, Pittenger C (2018) The role of stress in the pathogenesis and maintenance of obsessive-compulsive disorder. Chronic Stress 2:2470547018758043

    PubMed Central  Google Scholar 

  • Ahmari SE, Dougherty DD (2015) Dissecting OCD circuits: from animal models to targeted treatments. Depress Anxiety 32:550–562

    PubMed  PubMed Central  Google Scholar 

  • Alarcon RD, Libb J, Boll T (1994) Neuropsychological testing in obsessive-compulsive disorder: a clinical review. J Neuropsychiatry Clin Neurosci 6:217–217

    CAS  PubMed  Google Scholar 

  • Angoa-Pérez M, Kane MJ, Briggs DI, Sykes CE, Shah MM, Francescutti DM, Rosenberg DR, Thomas DM, Kuhn DM (2012) Genetic depletion of brain 5HT reveals a common molecular pathway mediating compulsivity and impulsivity. J Neurochem 121:974–984

    PubMed  PubMed Central  Google Scholar 

  • Angoa-Pérez M, Kane MJ, Briggs DI, Francescutti DM, Kuhn DM (2013) Marble burying and nestlet shredding as tests of repetitive, compulsive-like behaviors in mice. J Vis Exp (82):50978. https://doi.org/10.3791/50978

  • Arnsten A, Cai JX, Goldman-Rakic PS (1988) The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects: evidence for alpha-2 receptor subtypes. J Neurosci 8:4287–4298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aston-Jones G, Waterhouse B (2016) Locus coeruleus: from global projection system to adaptive regulation of behavior. Brain Res 1645:75–78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aston-Jones G, Rajkowski J, Cohen J (1999) Role of locus coeruleus in attention and behavioral flexibility. Biol Psychiatry 46:1309–1320

    CAS  PubMed  Google Scholar 

  • Aston-Jones G, Iba M, Clayton E, Rajkowski J, Cohen J (2007) The locus coeruleus and regulation of behavioral flexibility and attention: clinical implications. Brain Norepinephrine: Neurobiol Therapeut 196–235

  • Benkelfat C, Mefford IN, Masters CF, Nordahl TE, King AC, Cohen RM, Murphy DL (1991) Plasma catecholamines and their metabolites in obsessive-compulsive disorder. Psychiatry Res 37:321–331

    CAS  PubMed  Google Scholar 

  • Berridge C, Arnsten A, Foote S (1993) Noradrenergic modulation of cognitive function: clinical implications of anatomical, electrophysiological and behavioural studies in animal models. Psychol Med 23:557–564

    CAS  PubMed  Google Scholar 

  • Billett E, Richter M, Sam F, Swinson R, Dai X-Y, King N, Badri F, Sasaki T, Buchanan J, Kennedy J (1998) Investigation of dopamine system genes in obsessive–compulsive disorder. Psychiatr Genet

  • Brady LS (1994) Stress, antidepressant drugs, and the locus coeruleus. Brain Res Bull 35:545–556

    CAS  PubMed  Google Scholar 

  • Brambilla F, Bellodi L, Perna G, Arancio C, Bertani A, Perini G, Carraro C, Gava F (1997) Noradrenergic receptor sensitivity in obsessive compulsive disorder: II. Cortisol response to acute clonidine administration. Psychiatry Res 69:163–168

    CAS  PubMed  Google Scholar 

  • Brennan BP, Rauch SL, Jensen JE, Pope HG Jr (2013) A critical review of magnetic resonance spectroscopy studies of obsessive-compulsive disorder. Biol Psychiatry 73:24–31

    PubMed  Google Scholar 

  • Brennan BP, Tkachenko O, Schwab ZJ, Juelich RJ, Ryan EM, Athey AJ, Pope HG, Jenike MA, Baker JT, Killgore WD (2015) An examination of rostral anterior cingulate cortex function and neurochemistry in obsessive–compulsive disorder. Neuropsychopharmacology 40:1866

    CAS  PubMed  PubMed Central  Google Scholar 

  • Broese M, Riemann D, Hein L, Nissen C (2012) α-Adrenergic receptor function, arousal and sleep: mechanisms and therapeutic implications. Pharmacopsychiatry 45:209–216

    CAS  PubMed  Google Scholar 

  • Brown LT, Mikell CB, Youngerman BE, Zhang Y, McKhann GM, Sheth SA (2016) Dorsal anterior cingulotomy and anterior capsulotomy for severe, refractory obsessive-compulsive disorder: a systematic review of observational studies. J Neurosurg 124:77–89

    PubMed  Google Scholar 

  • Chappell PB, Riddle MA, Scahill L, Lynch KA, Schultz R, Arnsten A, Leckman JF, Cohen DJ (1995) Guanfacine treatment of comorbid attention-deficit hyperactivity disorder and Tourette’s syndrome: preliminary clinical experience. J Am Acad Child Adolesc Psychiatry 34:1140–1146

    CAS  PubMed  Google Scholar 

  • Chen Y-W, Das M, Oyarzabal EA, Cheng Q, Plummer NW, Smith KG, Jones GK, Malawsky D, Yakel JL, Shih Y-YI, Jensen P (2019) Genetic identification of a population of noradrenergic neurons implicated in attenuation of stress-related responses. Mol Psychiatry 24:710–725. https://doi.org/10.1038/s41380-018-0245-8

    Article  CAS  PubMed  Google Scholar 

  • Cocchi L, Harrison BJ, Pujol J, Harding IH, Fornito A, Pantelis C, Yücel M (2012) Functional alterations of large-scale brain networks related to cognitive control in obsessive-compulsive disorder. Hum Brain Mapp 33:1089–1106

    PubMed  Google Scholar 

  • Cohen R, Kaplan R, Moser D, Jenkins M, Wilkinson H (1999a) Impairments of attention after cingulotomy. Neurology 53:819–819

    CAS  PubMed  Google Scholar 

  • Cohen RA, Kaplan RF, Zuffante P, Moser DJ, Jenkins MA, Salloway S, Wilkinson H (1999b) Alteration of intention and self-initiated action associated with bilateral anterior cingulotomy. J Neuropsychiatry Clin Neurosci 11:444–453

    CAS  PubMed  Google Scholar 

  • Colombo G, Maccioni P, Vargiolu D, Loi B, Lobina C, Zaru A, Carai MA, Gessa GL (2014) The dopamine β-hydroxylase inhibitor, nepicastat, reduces different alcohol-related behaviors in rats. Alcohol Clin Exp Res 26:2345–2353

    Google Scholar 

  • Cosgrove GR, Rauch SL (2003) Stereotactic cingulotomy. Neurosurg Clin N Am 14:225–235

    PubMed  Google Scholar 

  • Crino PB, Morrison JH, Hof PR (1993) Monoaminergic innervation of cingulate cortex. In: Neurobiology of cingulate cortex and limbic thalamus. Springer, pp 285–310

  • Cummings DD, Singer HS, Krieger M, Miller TL, Mahone EM (2002) Neuropsychiatric effects of guanfacine in children with mild tourette syndrome: a pilot study. Clin Neuropharmacol 25:325–332

    CAS  PubMed  Google Scholar 

  • Czyrak A, Czepiel K, Maćkowiak M, Chocyk A, Wędzony K (2003) Serotonin 5-HT1A receptors might control the output of cortical glutamatergic neurons in rat cingulate cortex. Brain Res 989:42–51

    CAS  PubMed  Google Scholar 

  • De Geus F, Denys DA, Sitskoorn MM, Westenberg HG (2007) Attention and cognition in patients with obsessive–compulsive disorder. Psychiatry Clin Neurosci 61:45–53

    PubMed  Google Scholar 

  • De La Garza IIR, Bubar MJ, Carbone CL, Moeller FG, Newton TF, Anastasio NC, Harper TA, Ware DL, Fuller MA, Holstein GJJPiN, Psychiatry B (2015) Evaluation of the dopamine β-hydroxylase (DβH) inhibitor nepicastat in participants who meet criteria for cocaine use disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 59:40–48

    Google Scholar 

  • De Ridder D, Leong SL, Manning P, Vanneste S, Glue P (2017) Anterior cingulate implant for obsessive-compulsive disorder. World Neurosurg 97:754. e757–754. e716

    Google Scholar 

  • Dominguez RA (1992) Serotonergic antidepressants and their efficacy in obsessive compulsive disorder. J Clin Psychiatry

  • Durcan MJ, Lister RG, Linnoila M (1989) Behavioral effects of alpha 2 adrenoceptor antagonists and their interactions with ethanol in tests of locomotion, exploration and anxiety in mice. Psychopharmacology 97:189–193

    CAS  PubMed  Google Scholar 

  • Feenstra MG, Klompmakers A, Figee M, Fluitman S, Vulink N, Westenberg HG, Denys D (2016) Prazosin addition to fluvoxamine: a preclinical study and open clinical trial in OCD. Eur Neuropsychopharmacol 26:310–319

    CAS  PubMed  Google Scholar 

  • Fineberg N, Chamberlain S, Hollander E, Boulougouris V, Robbins T (2011) Translational approaches to obsessive-compulsive disorder: from animal models to clinical treatment. Br J Pharmacol 164:1044–1061

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzgerald KD, Welsh RC, Gehring WJ, Abelson JL, Himle JA, Liberzon I, Taylor SF (2005) Error-related hyperactivity of the anterior cingulate cortex in obsessive-compulsive disorder. Biol Psychiatry 57:287–294

    PubMed  Google Scholar 

  • Flavin SA, Winder DG (2013) Noradrenergic control of the bed nucleus of the stria terminalis in stress and reward. Neuropharmacology 70:324–330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fodstad H, Strandman E, Karlsson B, West K (1982) Treatment of chronic obsessive compulsive states with stereotactic anterior capsulotomy or cingulotomy. Acta Neurochir 62:1–23

    CAS  PubMed  Google Scholar 

  • Gehring WJ, Himle J, Nisenson LG (2000) Action-monitoring dysfunction in obsessive-compulsive disorder. Psychol Sci 11:1–6

    CAS  PubMed  Google Scholar 

  • Gompf HS, Mathai C, Fuller PM, Wood DA, Pedersen NP, Saper CB, Lu J (2010) Locus ceruleus and anterior cingulate cortex sustain wakefulness in a novel environment. J Neurosci 30:14543–14551

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goodman WK, McDougle CJ, Price LH, Riddle MA, Pauls D, Leckman J. (1990) Beyond the serotonin hypothesis: a role for dopamine in some forms of obsessive compulsive disorder? J Clin Psychiatry

  • Gorman AL, Dunn AJJPB, Behavior (1993) β-Adrenergic receptors are involved in stress-related behavioral changes. Pharmacol Biochem Behav 45:1–7

    CAS  PubMed  Google Scholar 

  • Graybiel AM, Rauch SL (2000) Toward a neurobiology of obsessive-compulsive disorder. Neuron 28:343–347

    CAS  PubMed  Google Scholar 

  • Hajós M, Gartside SE, Varga V, Sharp T (2003) In vivo inhibition of neuronal activity in the rat ventromedial prefrontal cortex by midbrain-raphe nuclei: role of 5-HT1A receptors. Neuropharmacology 45:72–81

    PubMed  Google Scholar 

  • Hollander E, DeCaria C, Nitescu A, Cooper T, Stover B, Gully R, Klein DF, Liebowitz MR (1991) Noradrenergic function in obsessive-compulsive disorder: behavioral and neuroendocrine responses to clonidine and comparison to healthy controls. Psychiatry Res 37:161–177

    CAS  PubMed  Google Scholar 

  • Itoi K, Sugimoto N (2010) The brainstem noradrenergic systems in stress, anxiety and depression. J Neuroendocrinol 22:355–361

    CAS  PubMed  Google Scholar 

  • Janer KW, Pardo JV (1991) Deficits in selective attention following bilateral anterior cingulotomy. J Cogn Neurosci 3:231–241

    CAS  PubMed  Google Scholar 

  • Ji M-H, Jia M, Zhang M-Q, Liu W-X, Xie Z-C, Wang Z-Y, Yang J-J (2014) Dexmedetomidine alleviates anxiety-like behaviors and cognitive impairments in a rat model of post-traumatic stress disorder. Progress Neuro-Psychopharmacol Biol Psychiatry 54:284–288

    CAS  Google Scholar 

  • Jimenez-Gomez C, Osentoski A, Woods JH (2011) Pharmacological evaluation of the adequacy of marble burying as an animal model of compulsion and/or anxiety. Behav Pharmacol 22:711

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joel D (2006) Current animal models of obsessive compulsive disorder: a critical review. Prog Neuro-Psychopharmacol Biol Psychiatry 30:374–388

    Google Scholar 

  • Jung HH, Kim C-H, Chang JH, Park YG, Chung SS, Chang JW (2006) Bilateral anterior cingulotomy for refractory obsessive-compulsive disorder: long-term follow-up results. Stereotact Funct Neurosurg 84:184–189

    PubMed  Google Scholar 

  • Kalanthroff E, Linkovski O, Weinbach N, Pascucci O, Anholt GE, Simpson HB (2016) What underlies the effect of sleep disruption? The role of alertness in obsessive-compulsive disorder (OCD). J Behav Ther Experiment Psychiatry 55:212–213

    Google Scholar 

  • Kane MJ, Angoa-Peréz M, Briggs DI, Sykes CE, Francescutti DM, Rosenberg DR, Kuhn DM (2012) Mice genetically depleted of brain serotonin display social impairments, communication deficits and repetitive behaviors: possible relevance to autism. PLoS One 7:e48975

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karayiorgou M, Sobin C, Blundell ML, Galke BL, Malinova L, Goldberg P, Ott J, Gogos JA (1999) Family-based association studies support a sexually dimorphic effect of COMT and MAOA on genetic susceptibility to obsessive-compulsive disorder. Biol Psychiatry 45:1178–1189

    CAS  PubMed  Google Scholar 

  • Kauppila T, Tanila H, Carlson S, Taira T (1991) Effects of atipamezole, a novel α2-adrenoceptor antagonist, in open-field, plus-maze, two compartment exploratory, and forced swimming tests in the rat. Eur J Pharmacol 205:177–182

    CAS  PubMed  Google Scholar 

  • Kedia S, Chattarji S (2014) Marble burying as a test of the delayed anxiogenic effects of acute immobilisation stress in mice. J Neurosci Methods 233:150–154

    PubMed  Google Scholar 

  • Kim CH, Chang J, Koo MS, Kim J, Suh H, Park I, Lee H (2003) Anterior cingulotomy for refractory obsessive–compulsive disorder. Acta Psychiatr Scand 107:283–290

    PubMed  Google Scholar 

  • Kim M-A, Lee HS, Lee BY, Waterhouse BD (2004) Reciprocal connections between subdivisions of the dorsal raphe and the nuclear core of the locus coeruleus in the rat. Brain Res 1026:56–67

    CAS  PubMed  Google Scholar 

  • Knesevich JW (1982) Successful treatment of obsessive-compulsive disorder with clonidine hydrochloride. Am J Psychiatry

  • Langen M, Durston S, Kas MJ, van Engeland H, Staal WG (2011) The neurobiology of repetitive behavior:… and men. Neurosci Biobehav Rev 35:356–365

    PubMed  Google Scholar 

  • Le A, Funk D, Juzytsch W, Coen K, Navarre BM, Cifani C, Shaham Y (2011) Effect of prazosin and guanfacine on stress-induced reinstatement of alcohol and food seeking in rats. Psychopharmacology 218:89–99

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lederman RJ (1999) Medical treatment of performance anxiety. Anxiety

  • Lee H-M, Kim Y. (2016). Drug repurposing is a new opportunity for developing drugs against neuropsychiatric disorders. Schizophrenia Res Treatment 2016

  • Li X, Morrow D, Witkin JM (2006) Decreases in nestlet shredding of mice by serotonin uptake inhibitors: comparison with marble burying. Life Sci 78:1933–1939

    CAS  PubMed  Google Scholar 

  • Lin H, Katsovich L, Ghebremichael M, Findley DB, Grantz H, Lombroso PJ, King RA, Zhang H, Leckman JF (2007) Psychosocial stress predicts future symptom severities in children and adolescents with Tourette syndrome and/or obsessive-compulsive disorder. J Child Psychol Psychiatry 48:157–166

    PubMed  PubMed Central  Google Scholar 

  • Lipsedge M Prothero W (1987) Clonidine and clomipramine in obsessive-compulsive disorder. Am J Psychiatry

  • Loughlin SE, Foote SL, Fallon JH (1982) Locus coeruleus projections to cortex: topography, morphology and collateralization. Brain Res Bull 9:287–294

    CAS  PubMed  Google Scholar 

  • Luttinger D, Ferrari R, Perrone M, Haubrich D (1985) Pharmacological analysis of alpha-2 adrenergic mechanisms in nociception and ataxia. J Pharmacol Exp Ther 232:883–889

    CAS  PubMed  Google Scholar 

  • Mantsch JR, Weyer A, Vranjkovic O, Beyer CE, Baker DA, Caretta H (2010) Involvement of noradrenergic neurotransmission in the stress-but not cocaine-induced reinstatement of extinguished cocaine-induced conditioned place preference in mice: role for β-2 adrenergic receptors. Neuropsychopharmacology 35:2165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Margulies DS, Kelly AC, Uddin LQ, Biswal BB, Castellanos FX, Milham MP (2007) Mapping the functional connectivity of anterior cingulate cortex. Neuroimage 37:579–588

    PubMed  Google Scholar 

  • Marino MD, Bourdélat-Parks BN, Liles LC, Weinshenker D (2005) Genetic reduction of noradrenergic function alters social memory and reduces aggression in mice. Behav Brain Res 161:197–203

    CAS  PubMed  Google Scholar 

  • Marzo A, Totah NK, Neves RM, Logothetis NK, Eschenko O (2014) Unilateral electrical stimulation of rat locus coeruleus elicits bilateral response of norepinephrine neurons and sustained activation of medial prefrontal cortex. J Neurophysiol 111:2570–2588

    PubMed  Google Scholar 

  • Mavissakalian M, Michelson L. (1983). Tricyclic antidepressants in obsessive-compulsive disorder: antiobsessional or antidepressant agents? J Nervous Mental Dis

  • Mavrogiorgou P, Juckel G, Frodl T, Gallinat J, Hauke W, Zaudig M, Dammann G, Möller H-J, Hegerl U (2002) P300 subcomponents in obsessive-compulsive disorder. J Psychiatr Res 36:399–406

    PubMed  Google Scholar 

  • McCall JG, Al-Hasani R, Siuda ER, Hong DY, Norris AJ, Ford CP, Bruchas MR (2015) CRH engagement of the locus coeruleus noradrenergic system mediates stress-induced anxiety. Neuron 87:605–620

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCall JG, Siuda ER, Bhatti DL, Lawson LA, McElligott ZA, Stuber GD, Bruchas MR (2017) Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior. Elife 6:e18247

    PubMed  PubMed Central  Google Scholar 

  • McGovern RA, Sheth SA (2017) Role of the dorsal anterior cingulate cortex in obsessive-compulsive disorder: converging evidence from cognitive neuroscience and psychiatric neurosurgery. J Neurosurg 126:132–147

    PubMed  Google Scholar 

  • Micallef J, Blin O (2001) Neurobiology and clinical pharmacology of obsessive-compulsive disorder. Clin Neuropharmacol 24:191–207

    CAS  PubMed  Google Scholar 

  • Millan MJ, Lejeune F, Gobert A, Brocco M, Auclair A, Bosc C, Rivet J-M, Lacoste J-M, Cordi A, Dekeyne A (2000) S18616, a highly potent spiroimidazoline agonist at α2-adrenoceptors: II. Influence on monoaminergic transmission, motor function, and anxiety in comparison with dexmedetomidine and clonidine. J Pharmacol Exp Therapeut 295:1206–1222

    CAS  Google Scholar 

  • Mitchell HA, Ahern TH, Liles LC, Javors MA, Weinshenker D (2006) The effects of norepinephrine transporter inactivation on locomotor activity in mice. Biol Psychiatry 60:1046–1052

    CAS  PubMed  Google Scholar 

  • Mitchell HA, Bogenpohl JW, Liles LC, Epstein MP, Bozyczko-Coyne D, Williams M, Weinshenker D (2008) Behavioral responses of dopamine β-hydroxylase knockout mice to modafinil suggest a dual noradrenergic–dopaminergic mechanism of action. Pharmacol Biochem Behav 91:217–222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murchison CF, Zhang X-Y, Zhang W-P, Ouyang M, Lee A, Thomas SA (2004) A distinct role for norepinephrine in memory retrieval. Cell 117:131–143

    CAS  PubMed  Google Scholar 

  • O'Leary OF, Bechtholt AJ, Crowley JJ, Valentino RJ, Lucki I (2007) The role of noradrenergic tone in the dorsal raphe nucleus of the mouse in the acute behavioral effects of antidepressant drugs. Eur Neuropsychopharmacol 17:215–226

    CAS  PubMed  Google Scholar 

  • Pasquier DA, Kemper TL, Forbes WB, Morgane PJ (1977) Dorsal raphe, substantia nigra and locus coeruleus: interconnections with each other and the neostriatum. Brain Res Bull 2:323–339

    CAS  PubMed  Google Scholar 

  • Pauls DL, Abramovitch A, Rauch SL, Geller DA (2014) Obsessive–compulsive disorder: an integrative genetic and neurobiological perspective. Nat Rev Neurosci 15:410–424

    CAS  PubMed  Google Scholar 

  • Pigott TA, L'Heureux F, Dubbert B, Bernstein S, Murphy DL (1994) Obsessive compulsive disorder: comorbid conditions. J Clin Psychiatry 55:15–27 discussion 28-32

    PubMed  Google Scholar 

  • Pittenger C, Krystal JH, Coric V (2006) Glutamate-modulating drugs as novel pharmacotherapeutic agents in the treatment of obsessive-compulsive disorder. NeuroRx 3:69–81

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pittenger C, Bloch MH, Williams K (2011) Glutamate abnormalities in obsessive compulsive disorder: neurobiology, pathophysiology, and treatment. Pharmacol Therapeut 132:314–332

    CAS  Google Scholar 

  • Pizarro M, Fontenelle LF, Paravidino DC, Yücel M, Miguel EC, de Menezes GB (2014) An updated review of antidepressants with marked serotonergic effects in obsessive–compulsive disorder. Expert Opin Pharmacother 15:1391–1401

    CAS  PubMed  Google Scholar 

  • Pooley E, Fineberg N, Harrison P (2007) The met 158 allele of catechol-O-methyltransferase (COMT) is associated with obsessive-compulsive disorder in men: case–control study and meta-analysis. Mol Psychiatry 12:556

    CAS  PubMed  Google Scholar 

  • Porter-Stransky KA, Centanni SW, Karne SL, Odil LM, Fekir S, Wong JC, Jerome C, Mitchell HA, Escayg A, Pedersen NP (2019) Noradrenergic transmission at alpha1-adrenergic receptors in the ventral periaqueductal gray modulates arousal. Biol Psychiatry 85:237–247

    CAS  PubMed  Google Scholar 

  • Posey DJ, McDougle CJ (2007) Guanfacine and guanfacine extended release: treatment for ADHD and related disorders. CNS Drug Rev 13:465–474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pudovkina OL, Cremers TI, Westerink BH (2002) The interaction between the locus coeruleus and dorsal raphe nucleus studied with dual-probe microdialysis. Eur J Pharmacol 445:37–42

    CAS  PubMed  Google Scholar 

  • Qu LL, Guo NN, Li BM (2008) β1-and β2-Adrenoceptors in basolateral nucleus of amygdala and their roles in consolidation of fear memory in rats. Hippocampus 18:1131–1139

    CAS  PubMed  Google Scholar 

  • Rainbow TC, Parsons B, Wolfe BB (1984) Quantitative autoradiography of beta 1-and beta 2-adrenergic receptors in rat brain. Proc Natl Acad Sci 81:1585–1589

    CAS  PubMed  Google Scholar 

  • Rasmussen DD, Kincaid CL, Froehlich JC. (2016). Prazosin prevents increased anxiety behavior that occurs in response to stress during alcohol deprivations. Alcohol and Alcoholism 1–7

  • Riffkin J, Yücel M, Maruff P, Wood SJ, Soulsby B, Olver J, Kyrios M, Velakoulis D, Pantelis C (2005) A manual and automated MRI study of anterior cingulate and orbito-frontal cortices, and caudate nucleus in obsessive-compulsive disorder: comparison with healthy controls and patients with schizophrenia. Psychiatry Res Neuroimaging 138:99–113

    Google Scholar 

  • Rinaman L (2010) Hindbrain noradrenergic A2 neurons: diverse roles in autonomic, endocrine, cognitive, and behavioral functions. Am J Phys Regul Integr Comp Phys 300:R222–R235

    Google Scholar 

  • Robertson SD, Plummer NW, De Marchena J, Jensen P (2013) Developmental origins of central norepinephrine neuron diversity. Nat Neurosci 16:1016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson SD, Plummer NW, Jensen P (2016) Uncovering diversity in the development of central noradrenergic neurons and their efferents. Brain Res 1641:234–244

    CAS  PubMed  Google Scholar 

  • Rommelfanger K, Edwards G, Freeman K, Liles L, Miller G, Weinshenker D (2007) Norepinephrine loss produces more profound motor deficits than MPTP treatment in mice. Proc Natl Acad Sci 104:13804–13809

    CAS  PubMed  Google Scholar 

  • Roozendaal B, Hahn EL, Nathan SV, Dominique J-F, McGaugh JL (2004) Glucocorticoid effects on memory retrieval require concurrent noradrenergic activity in the hippocampus and basolateral amygdala. J Neurosci 24:8161–8169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roozendaal B, Okuda S, Van der Zee EA, McGaugh JLJ (2006) Glucocorticoid enhancement of memory requires arousal-induced noradrenergic activation in the basolateral amygdala. Proc Natl Acad Sci 103:6741–6746

    CAS  PubMed  Google Scholar 

  • Rosso G, Albert U, Asinari GF, Bogetto F, Maina G (2012) Stressful life events and obsessive–compulsive disorder: clinical features and symptom dimensions. Psychiatry Res 197:259–264

    PubMed  Google Scholar 

  • Rudoy C, Van Bockstaele E (2007) Betaxolol, a selective β1-adrenergic receptor antagonist, diminishes anxiety-like behavior during early withdrawal from chronic cocaine administration in rats. Progress Neuro-Psychopharmacol Biol Psychiatry 31:1119–1129

    CAS  Google Scholar 

  • Sallee FR, Eaton K (2010) Guanfacine extended-release for attention-deficit/hyperactivity disorder (ADHD). Expert Opin Pharmacother 11:2549–2556

    CAS  PubMed  Google Scholar 

  • Sallee FR, Mcgough J, Wigal T, Donahue J, Lyne A, Biederman J (2009) Guanfacine extended release in children and adolescents with attention-deficit/hyperactivity disorder: a placebo-controlled trial. J Am Acad Child Adolesc Psychiatry 112:155–165

    Google Scholar 

  • Sara SJ (2009) The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci 10:211

    CAS  PubMed  Google Scholar 

  • Schank JR, Liles LC, Weinshenker D (2008) Norepinephrine signaling through β-adrenergic receptors is critical for expression of cocaine-induced anxiety. Biol Psychiatry 63:1007–1012

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schindler KM, Richter M, Kennedy JL, Pato MT, Pato CN (2000) Association between homozygosity at the COMT gene locus and obsessive compulsive disorder. Am J Med Genet 96:721–724

    CAS  PubMed  Google Scholar 

  • Scholtysik G (1980) Pharmacology of guanfacine. Br J Clin Pharmacol 10:21S–24S

    PubMed  PubMed Central  Google Scholar 

  • Schroeder JP, Epps SA, Grice TW, Weinshenker D (2013) The selective dopamine β-hydroxylase inhibitor nepicastat attenuates multiple aspects of cocaine-seeking behavior. Neuropsychopharmacology 38:1032

    CAS  PubMed  PubMed Central  Google Scholar 

  • Segal M (1979) Serotonergic innervation of the locus coeruleus from the dorsal raphe and its action on responses to noxious stimuli. J Physiol 286:401–415

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shepherd JK, Grewal SS, Fletcher A, Bill DJ, Dourish CT (1994) Behavioural and pharmacological characterisation of the elevated “zero-maze” as an animal model of anxiety. Psychopharmacology 116:56–64

    CAS  PubMed  Google Scholar 

  • Siever LJ, Insel TR, Jimerson DC, Lake CR, Uhde TW, Aloi J, Murphy DL (1983) Growth hormone response to clonidine in obsessive-compulsive patients. Br J Psychiatry 142:184–187

    CAS  PubMed  Google Scholar 

  • Skelly MJ, Weiner JL (2014) Chronic treatment with prazosin or duloxetine lessens concurrent anxiety-like behavior and alcohol intake: evidence of disrupted noradrenergic signaling in anxiety-related alcohol use. Brain Behav 4:468–483

    PubMed  PubMed Central  Google Scholar 

  • Spitznagel MB, Suhr JA (2002) Executive function deficits associated with symptoms of schizotypy and obsessive–compulsive disorder. Psychiatry Res 110:151–163

    PubMed  Google Scholar 

  • Steenen SA, van Wijk AJ, Van Der Heijden GJ, van Westrhenen R, de Lange J, de Jongh A (2016) Propranolol for the treatment of anxiety disorders: systematic review and meta-analysis. J Psychopharmacol 30:128–139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stein DJ (2000) Neurobiology of the obsessive–compulsive spectrum disorders. Biol Psychiatry 47:296–304

    CAS  PubMed  Google Scholar 

  • Stemmelin J, Cohen C, Terranova J-P, Lopez-Grancha M, Pichat P, Bergis O, Decobert M, Santucci V, Françon D, Alonso R (2008) Stimulation of the β 3-adrenoceptor as a novel treatment strategy for anxiety and depressive disorders. Neuropsychopharmacology 33:574

    CAS  PubMed  Google Scholar 

  • Stevens FL, Hurley RA, Taber KH (2011) Anterior cingulate cortex: unique role in cognition and emotion. J Neuropsychiatry Clin Neurosci 23:121–125

    PubMed  Google Scholar 

  • Stone E, Zhang Y, Rosengarten H, Yeretsian J, Quartermain D (1999) Brain alpha 1-adrenergic neurotransmission is necessary for behavioral activation to environmental change in mice. Neuroscience 94:1245–1252

    CAS  PubMed  Google Scholar 

  • Stone EA, Lin Y, Rosengarten H, Kramer HK, Quartermain D (2003) Emerging evidence for a central epinephrine-innervated α 1-adrenergic system that regulates behavioral activation and is impaired in depression. Neuropsychopharmacology 28:1387

    CAS  PubMed  Google Scholar 

  • Stone EA, Lin Y, Ahsan R, Quartermain D (2004) Gross mapping of α1-adrenoceptors that regulate behavioral activation in the mouse brain. Behav Brain Res 152:167–175

    CAS  PubMed  Google Scholar 

  • Stone EA, Lin Y, Ahsan MR, Quartermain D (2005) α 1-Adrenergic and α 2-adrenergic balance in the dorsal pons and gross behavioral activity of mice in a novel environment. Psychopharmacology 183:127

    CAS  PubMed  Google Scholar 

  • Stone EA, Yan L, Ahsan MR, Lehmann ML, Yeretsian J, Quartermain D (2006) Role of CNS α1-adrenoceptor activity in central fos responses to novelty. Synapse 59:299–307

    CAS  PubMed  Google Scholar 

  • Sugimoto Y, Tagawa N, Kobayashi Y, Hotta Y, Yamada J (2007) Effects of the serotonin and noradrenaline reuptake inhibitor (SNRI) milnacipran on marble burying behavior in mice. Biol Pharm Bull 30:2399–2401

    CAS  PubMed  Google Scholar 

  • Szabo ST, Blier P (2001) Functional and pharmacological characterization of the modulatory role of serotonin on the firing activity of locus coeruleus norepinephrine neurons. Brain Res 922:9–20

    CAS  PubMed  Google Scholar 

  • Tanaka E, North RA (1993) Actions of 5-hydroxytryptamine on neurons of the rat cingulate cortex. J Neurophysiol 69:1749–1757

    CAS  PubMed  Google Scholar 

  • Taormina SP, Galloway MP, Rosenberg DR (2016) Treatment efficacy of combined sertraline and guanfacine in comorbid OCD and ADHD: two case studies. J Dev Behav Pediatr 37:491

    PubMed  PubMed Central  Google Scholar 

  • Thomas SA, Matsumoto AM, Palmiter RD (1995) Noradrenaline is essential for mouse fetal development. Nature 374:643

    CAS  PubMed  Google Scholar 

  • Thomas SA, Marck BT, Palmiter RD, Matsumoto AM (1998) Restoration of norepinephrine and reversal of phenotypes in mice lacking dopamine β-hydroxylase. J Neurochem 70:2468–2476

    CAS  PubMed  Google Scholar 

  • Thomas A, Burant A, Bui N, Graham D, Yuva-Paylor LA, Paylor R (2009) Marble burying reflects a repetitive and perseverative behavior more than novelty-induced anxiety. Psychopharmacology 204:361–373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tillage RP, Sciolino NR, Plummer NW, Lustberg D, Liles LC, Hsiang M, Powell JM, Smith KG, Jensen P, Weinshenker D (2020) Elimination of galanin synthesis in noradrenergic neurons reduces galanin in select brain areas and promotes active coping behaviors. Brain Struct Function 1–19

  • Ting JT, Feng G (2011) Neurobiology of obsessive–compulsive disorder: insights into neural circuitry dysfunction through mouse genetics. Curr Opin Neurobiol 21:842–848

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uematsu A, Tan BZ, Johansen JP (2015) Projection specificity in heterogeneous locus coeruleus cell populations: implications for learning and memory. Learn Mem 22:444–451

    PubMed  PubMed Central  Google Scholar 

  • Valentino RJ, Foote SL, Page ME (1993) The locus coeruleus as a site for integrating corticotropin-releasing factor and noradrenergic mediation of stress responses a. Ann N Y Acad Sci 697:173–188

    CAS  PubMed  Google Scholar 

  • van Balkom AJ, van Oppen P, Vermeulen AW, van Dyck R, Nauta MC, Vorst HC (1994) A meta-analysis on the treatment of obsessive compulsive disorder: a comparison of antidepressants, behavior, and cognitive therapy. Clin Psychol Rev 14:359–381

    Google Scholar 

  • Van Der Laan JW, Van Veenendaal W, Voorthuis P, Weick G, Hillen FC (1985) The effects of centrally acting adrenergic agonists on temperature and on explorative and motor behaviour. Relation with effects on quasi-morphine withdrawal behaviour. Eur J Pharmacol 107:367–373

    PubMed  Google Scholar 

  • Van Laere K, Nuttin B, Gabriels L, Dupont P, Rasmussen S, Greenberg BD, Cosyns P (2006) Metabolic imaging of anterior capsular stimulation in refractory obsessive-compulsive disorder: a key role for the subgenual anterior cingulate and ventral striatum. J Nucl Med 47:740–747

    PubMed  Google Scholar 

  • Vankov A, Hervé-Minvielle A, Sara SJ (1995) Response to novelty and its rapid habituation in locus coeruleus neurons of the freely exploring rat. Eur J Neurosci 7:1180–1187

    CAS  PubMed  Google Scholar 

  • Weinshenker D, Miller NS, Blizinsky K, Laughlin ML, Palmiter RD (2002) Mice with chronic norepinephrine deficiency resemble amphetamine-sensitized animals. Proc Natl Acad Sci 99:13873–13877

    CAS  PubMed  Google Scholar 

  • Witkin JM (2008) Animal models of obsessive-compulsive disorder. Curr Protocols Neurosci 45:9.30. 31–39.30. 39

    Google Scholar 

  • Wolmarans DW, Stein DJ, Harvey BH (2016) Of mice and marbles: novel perspectives on burying behavior as a screening test for psychiatric illness. Cogn Affect Behav Neurosci 16:551–560

    Google Scholar 

  • Young R, Batkai S, Dukat M, Glennon RA (2006) TDIQ (5, 6, 7, 8-tetrahydro-1, 3-dioxolo [4, 5-g] isoquinoline) exhibits anxiolytic-like activity in a marble-burying assay in mice. Pharmacol Biochem Behav 84:62–73

    CAS  PubMed  Google Scholar 

  • Yücel M, Wood SJ, Fornito A, Riffkin J, Velakoulis D, Pantelis C (2003) Anterior cingulate dysfunction: implications for psychiatric disorders? J Psychiatry Neurosci 28:350

    PubMed  PubMed Central  Google Scholar 

  • Zheng J, Luo F, Guo N-n, Cheng Z-y, B-m L (2015) β1-and β2-adrenoceptors in hippocampal CA3 region are required for long-term memory consolidation in rats. Brain Res 1627:109–118

    CAS  PubMed  Google Scholar 

  • Zhou H-C, Sun Y-Y, Cai W, He X-T, Yi F, Li B-M, Zhang X-H (2013) Activation of β2-adrenoceptor enhances synaptic potentiation and behavioral memory via cAMP-PKA signaling in the medial prefrontal cortex of rats. Learn Mem 20:274–284

    CAS  PubMed  Google Scholar 

  • Zohar J, Chopra M, Sasson Y, Amiaz R, Amital D (2000) Obsessive compulsive disorder: serotonin and beyond. World J Biol Psychiatry 1:92–100

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Lundbeck for providing the DOPS, Synosia Therapeutics for providing the nepicastat, and C. Strauss for helpful editing of the manuscript.

Funding

This work was supported by the National Institutes of Health (AG061175, NS102306, and DA038453 to DW; GM8602-22 to DL; MH116622 to RPT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Weinshenker.

Ethics declarations

Conflict of interest

DW is co-inventor on a patent concerning the use of selective dopamine β-hydroxylase inhibitors for the treatment of cocaine dependence (US-2010-0105748-A1; “Methods and Compositions for Treatment of Drug Addiction”). The other authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lustberg, D., Iannitelli, A.F., Tillage, R.P. et al. Central norepinephrine transmission is required for stress-induced repetitive behavior in two rodent models of obsessive-compulsive disorder. Psychopharmacology 237, 1973–1987 (2020). https://doi.org/10.1007/s00213-020-05512-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-020-05512-0

Keywords

Navigation