Skip to main content
Log in

Lessons learned from using fMRI in the early clinical development of a mu-opioid receptor antagonist for disorders of compulsive consumption

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Functional magnetic resonance imaging (fMRI) has been widely used to gain a greater understanding of brain circuitry abnormalities in CNS disorders. fMRI has also been used to examine pharmacological modulation of brain circuity and is increasingly being used in early clinical drug development as functional pharmacodynamic index of target engagement, and to provide early indication of clinical efficacy. In this short review, we summarize data from experimental medicine and early clinical development studies of a mu-opioid receptor antagonist, GSK1521498 developed for disorders of compulsive consumption including binge eating in obesity. We demonstrate how fMRI can be used to answer important questions of early clinical drug development relating to; (1) target engagement, (2) dose response relationships, (3) differential efficacy and (4) prediction of behavioural and clinically relevant outcomes. We also highlight important methodological factors that need to be considered when conducting fMRI studies in drug development given the challenges faced with small sample sizes in Phase 1 and early proof of mechanism studies. While these data highlight the value of fMRI as a biomarker in drug development, its use for making Go/No-go decisions is still faced with challenges given the variability of responses, interpretation of brain activation changes and the limited data linking drug induced changes in brain activity to clinical or behavioural outcome. These challenges need to be addressed to fulfil the promise of fMRI as a tool in clinical drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balchandani P, Naidich TP (2015) Ultra-high-field MR neuroimaging. AJNR Am J Neuroradiol 36:1204–1215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barron DS, Salehi M, Browning M, Harmer CJ, Constable RT, Duff E (2018) Exploring the prediction of emotional valence and pharmacologic effect across fMRI studies of antidepressants. Neuroimage Clin 20:407–414

    PubMed  PubMed Central  Google Scholar 

  • Borogovac A, Asllani I (2012) Arterial spin Labelling (ASL) fMRI: advantages, theoretical constrains, and experimental challenges in neurosciences. Int J Biomed Imaging 2012:818456

    PubMed  PubMed Central  Google Scholar 

  • Borsook D, Becerra L, Hargreaves R (2006) A role for fMRI in optimizing CNS drug development. Nat Rev Drug Discov 5:411–425

    CAS  PubMed  Google Scholar 

  • Button KS, Ioannidis JPA, Mokrysz C, Nosek BA, Flint J, Robinson ES, Munafò MR (2013) Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci 14:365–376. https://doi.org/10.1038/nrn3475

    Article  CAS  PubMed  Google Scholar 

  • Cambridge VC, Ziauddeen H, Nathan PJ, Subramaniam N, Dodds C, Chamberlain SR, Koch A, Maltby K, Skeggs AL, Napolitano A, Farooqi IS, Bullmore ET, Fletcher PC (2013) Neural and behavioral effects of a novel mu opioid receptor antagonist in binge-eating obese people. Biol Psychiatry 73(9):887–894

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carmichael O, Schwarz AJ, Chatham CH, Scott D, Turner JA, Upadhyay J, Coimbra A, Goodman JA, Baumgartner R, English BA, Apolzan JW, Shankapal P, Hawkins KR (2018) The role of fMRI in drug development. Drug Discov Today 23(2):333–348

    CAS  PubMed  Google Scholar 

  • Chen EE, Small SL (2007) Test-retest reliability in fMRI of language: group and task effects. Brain Lang 102:176–185. https://doi.org/10.1016/j.bandl.2006.04.015

    Article  PubMed  Google Scholar 

  • Cohen AD, Nencka AS, Wang Y (2018) Multiband multi-echo simultaneous ASL/ BOLD for task-induced functional MRI. PLoS One 13(e0190427):1–21

    Google Scholar 

  • Delnomdedieu M, Forsberg A, Ogden A, Fazio P, Yu CR, Stenkrona P, Duvvuri S, David W, Al-Tawil N, Vitolo OV, Amini N, Nag S, Halldin C, Varrone A (2017) In vivo measurement of PDE10A enzyme occupancy by positron emission tomography (PET) following single oral dose administration of PF-02545920 in healthy male subjects. Neuropharmacol 117:171–181

    CAS  Google Scholar 

  • Donnelly DJ (2017) Small molecule PET tracers in drug discovery. Semin Nucl Med 47(5):454–460

    PubMed  Google Scholar 

  • Du YP, Chu R, Tregellas JR (2014) Enhancing the detection of BOLD signal in fMRI by reducing the partial volume effect. Comput Math Methods Med 2014:1–9

    Google Scholar 

  • Elliott ML, Knodt AR, Ireland D et al (2019) What is the test-retest reliability of common task-fMRI measures? New empirical evidence and a meta-analysis bioRxiv 681700. https://doi.org/10.1101/681700

  • Farmer AD, Coen SJ, Kano M, Paine PA, Shwahdi M, Jafari J, Kishor J, Worthen SF, Rossiter HE, Kumari V, Williams SC, Brammer M, Giampietro VP, Droney J, Riley J, Furlong PL, Knowles CH, Lightman SL, Aziz Q (2013) Psychophysiological responses to pain identify reproducible human clusters. Pain 154:2266–2276. https://doi.org/10.1016/j.pain.2013.05.016

    Article  CAS  PubMed  Google Scholar 

  • Fletcher PC, Napolitano A, Skeggs A, Miller SR, Delafont B, Cambridge VC, de Wit S, Nathan PJ, Brooke A, O'Rahilly S, Farooqi IS, Bullmore ET (2010) Distinct modulatory effects of satiety and sibutramine on brain responses to food images in humans: a double dissociation across hypothalamus, amygdala, and ventral striatum. J Neurosci 30(43):14346–14355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giuliano C, Robbins TW, Nathan PJ, Bullmore ET, Everitt BJ (2012) Inhibition of opioid transmission at the μ-opioid receptor prevents both food seeking and binge-like eating. Neuropsychopharmacol 37(12):2643–2652

    CAS  Google Scholar 

  • Godlewska BR, Browning M, Norbury R, Igoumenou A, Cowen PJ, Harmer CJ (2018) Predicting treatment response in depression: the role of anterior cingulate cortex. Int J Neuropsychopharmacol 21(11):988–996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gorno-Tempini ML, Hutton C, Josephs O et al (2002) Echo time dependence of BOLD contrast and susceptibility artifacts. Neuroimage 15:136–142

    PubMed  Google Scholar 

  • Gountouna V-E, Job DE, McIntosh AM, Moorhead TW, Lymer GK, Whalley HC, Hall J, Waiter GD, Brennan D, McGonigle D, Ahearn TS, Cavanagh J, Condon B, Hadley DM, Marshall I, Murray AD, Steele JD, Wardlaw JM, Lawrie SM (2010) Functional magnetic resonance imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task. Neuroimage 49:552–560

    PubMed  Google Scholar 

  • Gunn RN, Rabiner EA (2017) Imaging in central nervous system drug discovery. Semin Nucl Med 47(1):89–98

    PubMed  Google Scholar 

  • Harrison RK (2016) Phase II and phase III failures: 2013-2015. Nature Rev Drug Discov 15:817–818

    CAS  Google Scholar 

  • Hay M, Thomas DW, Craighead JL, Economides C, Rosental J (2014) Clinical development success rates for investigational drugs. Nat Biotechnol 32:40–51

    CAS  PubMed  Google Scholar 

  • Heisler LK, Jobst EE, Sutton GM, Zhou L, Borok E, Thornton-Jones Z, Liu HY, Zigman JM, Balthasar N, Kishi T, Lee CE, Aschkenasi CJ, Zhang CY, Yu J, Boss O, Mountjoy KG, Clifton PG, Lowell BB, Friedman JM, Horvath T, Butler AA, Elmquist JK, Cowley MA (2006) Serotonin reciprocally regulates melanocortin neurons to modulate food intake. Neuron 51(2):239–249

    CAS  PubMed  Google Scholar 

  • Holiga Š, Sambataro F, Luzy C, Greig G, Sarkar N, Renken RJ, Marsman JC, Schobel SA, Bertolino A, Dukart J (2018) Test-retest reliability of task-based and resting-state blood oxygen level dependence and cerebral blood flow measures. PLoS One 13:e0206583. https://doi.org/10.1371/journal.pone.0206583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland D, Kuperman JM, Dale AM (2010) Efficient correction of inhomogeneous static magnetic field-induced distortion in echo planar imaging. Neuroimage 50:175–183. https://doi.org/10.1016/j.neuroimage.2009.11.044

    Article  PubMed  Google Scholar 

  • Kähkönen S (2006) Magnetoencephalography (MEG): a non-invasive tool for studying cortical effects in psychopharmacology. Int J Neuropsychopharmacol 9(3):367–372

    PubMed  Google Scholar 

  • Kelly E, Mundell SJ, Sava A, Roth AL, Felici A, Maltby K, Nathan PJ, Bullmore ET, Henderson G (2015) The opioid receptor pharmacology of GSK1521498 compared to other ligands with differential effects on compulsive reward-related behaviours. Psychopharmacol 232(1):305–314

    CAS  Google Scholar 

  • Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3(8):711–715

    CAS  PubMed  Google Scholar 

  • Logothetis NK (2003) The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci 23:3963–3971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157

    CAS  PubMed  Google Scholar 

  • MacDonald SWS, Nyberg L, Bäckman L (2006) Intra-individual variability in behavior: links to brain structure, neurotransmission and neuronal activity. Trends Neurosci 29:474–480. https://doi.org/10.1016/J.TINS.2006.06.011

    Article  CAS  PubMed  Google Scholar 

  • Manoach DS, Halpern EF, Kramer TS et al (2001) Test-retest reliability of a functional MRI working memory paradigm in Normal and schizophrenic subjects. Am J Psychiatry 158:955–958. https://doi.org/10.1176/appi.ajp.158.6.955

    Article  CAS  PubMed  Google Scholar 

  • Marshall I, Simonotto E, Deary IJ, Maclullich A, Ebmeier KP, Rose EJ, Wardlaw JM, Goddard N, Chappell FM (2004) Repeatability of motor and working-memory tasks in healthy older volunteers: assessment at functional MR imaging. Radiology 233:868–877. https://doi.org/10.1148/radiol.2333031782

    Article  PubMed  Google Scholar 

  • Matthews PM, Rabiner EA, Passchier J, Gunn RN (2012) Positron emission tomography molecular imaging for drug development. Br J Clin Pharmacol 73(2):175–186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morris LS, Kundu P, Costi S, et al (2018) Ultra-high field MRI reveals mood-related circuit disturbances in depression: a comparison between 3-Tesla and 7-Tesla. bioRxiv 459479

  • Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW (2006) Central nervous system control of food intake and body weight. Nature 443(7109):289–295

    CAS  PubMed  Google Scholar 

  • Nathan PJ, Bullmore ET (2009) From taste hedonics to motivational drive: central μ-opioid receptors and binge-eating behaviour. Int J Neuropsychopharmacol 12(7):995–1008

    CAS  PubMed  Google Scholar 

  • Nord CL, Valton V, Wood J, Roiser JP (2017) Power-up: a reanalysis of “power failure” in neuroscience using mixture modeling. J Neurosci 37:8051–8061. https://doi.org/10.1523/JNEUROSCI.3592-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Postnov A, Schmidt ME, Pemberton DJ, de Hoon J, van Hecken A, van den Boer M, Zannikos P, van der Ark P, Palmer JA, Rassnick S, Celen S, Bormans G, van Laere K (2018) Fatty acid amide hydrolase inhibition by JNJ-42165279: a multiple-ascending dose and a positron emission tomography study in healthy volunteers. Clin Transl Sci 11(4):397–404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rabiner EA, Beaver J, Makwana A, Searle G, Long C, Nathan PJ, Newbould RD, Howard J, Miller SR, Bush MA, Hill S, Reiley R, Passchier J, Gunn RN, Matthews PM, Bullmore ET (2011) Pharmacological differentiation of opioid receptor antagonists by molecular and functional imaging of target occupancy and food reward-related brain activation in humans. Mol Psychiatry 16(8):826–835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sauder CL, Hajcak G, Angstadt M, Phan KL (2013) Test-retest reliability of amygdala response to emotional faces. Psychophysiology 50:1147–1156

    PubMed  Google Scholar 

  • Searle G, Beaver JD, Comley RA, Bani M, Tziortzi A, Slifstein M, Mugnaini M, Griffante C, Wilson AA, Merlo-Pich E, Houle S, Gunn R, Rabiner EA, Laruelle M (2010) Imaging dopamine D3 receptors in the human brain with positron emission tomography, [11C] PHNO, and a selective D3 receptor antagonist. Biol Psychiatry 68(4):392–399

    CAS  PubMed  Google Scholar 

  • Stewart SB, Koller JM, Campbell MC, Black KJ (2014) Arterial spin labeling versus BOLD in direct challenge and drug-task interaction pharmacological fMRI. PeerJ 2(687):1–14

    Google Scholar 

  • Thomas DW, Burns J, Audette J, Carrol A, Dow-Hygelund C, Hay M (2016) Clinical development success rates 2006–2015. Biomedtracker, San Diego

    Google Scholar 

  • Upadhyay J, Anderson J, Schwarz AJ, Coimbra A, Baumgartner R, Pendse G, George E, Nutile L, Wallin D, Bishop J, Neni S, Maier G, Iyengar S, Evelhoch JL, Bleakman D, Hargreaves R, Becerra L, Borsook D (2011) Imaging drugs with and without clinical analgesic efficacy. Neuropsychopharmacology 36(13):2659–2673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vai B, Bulgarelli C, Godlewska BR, Cowen PJ, Benedetti F, Harmer CJ (2016) Fronto-limbic effective connectivity as possible predictor of antidepressant response to SSRI administration. Eur Neuropsychopharmacol 26(12):2000–2010

    CAS  PubMed  Google Scholar 

  • van der Aart J, Salinas C, Dimber R, Pampols-Maso S, Weekes AA, Tonkyn J, Gray FA, Passchier J, Gunn RN, Rabiner EA (2018) Quantification of human brain PDE4 occupancy by GSK356278: a [11C] (R)-rolipram PET study. J Cereb Blood Flow Metab 11:2033–2040

    Google Scholar 

  • Vanover KE, Davis RE, Zhou Y, Ye W, Brašić JR, Gapasin L, Saillard J, Weingart M, Litman RE, Mates S, Wong DF (2018) Dopamine D2 receptor occupancy of lumateperone (ITI-007): a positron emission tomography study in patients with schizophrenia. Neuropsychopharmacol doi 44:598–605. https://doi.org/10.1038/s41386-018-0251-1

    Article  CAS  Google Scholar 

  • Wager TD, Woo C-W (2015) fMRI in analgesic drug discovery. Sci Transl med 7:274fs6. https://doi.org/10.1126/scitranslmed.3010342

    Article  CAS  PubMed  Google Scholar 

  • Wanigasekera V, Wartolowska K, Huggins JP, Duff EP, Vennart W, Whitlock M, Massat N, Pauer L, Rogers P, Hoggart B, Tracey I (2018) Disambiguating pharmacological mechanisms from placebo in neuropathic pain using functional neuroimaging. Br J Anaesth 120(2):299–307

    CAS  PubMed  Google Scholar 

  • Wartolowska K, Tracey I (2009) Neuroimaging as a tool for pain diagnosis and analgesic development. Neurotherapeutics 6:755–760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weibull A, Gustavsson H, Mattsson S, Svensson J (2008) Investigation of spatial resolution, partial volume effects and smoothing in functional MRI using artificial 3D time series. Neuroimage 41:346–353

    CAS  PubMed  Google Scholar 

  • Welvaert M, Rosseel Y (2013) On the definition of signal-to-noise ratio and contrast-to-noise ratio for fMRI data. PLoS One 8:e77089

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whalley HC, Gountouna V-E, Hall J, McIntosh A, Simonotto E, Job DE, Owens DG, Johnstone EC, Lawrie SM (2009) fMRI changes over time and reproducibility in unmedicated subjects at high genetic risk of schizophrenia. Psychol Med 39:1189. https://doi.org/10.1017/S0033291708004923

    Article  CAS  PubMed  Google Scholar 

  • Wise RG, Tracey I (2006) The role of fMRI in drug discovery. J Magn Reson Imaging 23(6):862–876

    PubMed  Google Scholar 

  • Wong CH, Siah KW, Lo AW (2019) Estimation of clinical trial success rates and related parameters. Biostatistics 20(2):273–286

    PubMed  Google Scholar 

  • Ye FQ, Berman KF, Ellmore T, Esposito G, van Horn J, Yang Y, Duyn J, Smith AM, Frank JA, Weinberger DR, McLaughlin A (2000) H215O PET validation of steady-state arterial spin tagging cerebral blood flow measurements in humans. Magn Reson Med 44:450–456

    CAS  PubMed  Google Scholar 

  • Zhou L, Williams T, Lachey JL, Kishi T, Cowley MA, Heisler LK (2005) Serotonergic pathways converge upon central melanocortin systems to regulate energy balance. Peptides 26(10):1728–1732

    CAS  PubMed  Google Scholar 

  • Ziauddeen H, Chamberlain SR, Nathan PJ, Koch A, Maltby K, Bush M, Tao WX, Napolitano A, Skeggs AL, Brooke AC, Cheke L, Clayton NS, Sadaf Farooqi I, O'Rahilly S, Waterworth D, Song K, Hosking L, Richards DB, Fletcher PC, Bullmore ET (2013) Effects of the mu-opioid receptor antagonist GSK1521498 on hedonic and consummatory eating behaviour: a proof of mechanism study in binge-eating obese subjects. Mol Psychiatry 18(12):1287–1293

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All the work discussed in this paper was conducted at Glaxo Smith Kline. Authors would like to acknowledge the significant contribution of Prof. Ed Bullmore who led the clinical development of GSK1521498 with Prof Pradeep Nathan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geor Bakker.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to a Special Issue on Imaging for CNS drug development and biomarkers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nathan, P.J., Bakker, G. Lessons learned from using fMRI in the early clinical development of a mu-opioid receptor antagonist for disorders of compulsive consumption. Psychopharmacology 238, 1255–1263 (2021). https://doi.org/10.1007/s00213-019-05427-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-019-05427-5

Keywords

Navigation