Nicotine enhances auditory processing in healthy and normal-hearing young adult nonsmokers



Electrophysiological studies show that systemic nicotine narrows frequency receptive fields and increases gain in neural responses to characteristic frequency stimuli. We postulated that nicotine enhances related auditory processing in humans.


The main hypothesis was that nicotine improves auditory performance. A secondary hypothesis was that the degree of nicotine-induced improvement depends on the individual’s baseline performance.


Young (18–27 years old), normal-hearing nonsmokers received nicotine (Nicorette gum, 6mg) or placebo gum in a single-blind, randomized, crossover design. Subjects performed four experiments involving tone-in-noise detection, temporal gap detection, spectral ripple discrimination, and selective auditory attention before and after treatment. The perceptual differences between posttreatment nicotine and placebo conditions were measured and analyzed as a function of the pre-treatment baseline performance.


Nicotine significantly improved performance in the more difficult tasks of tone-in-noise detection and selective attention (effect size = − 0.3) but had no effect on relatively easier tasks of temporal gap detection and spectral ripple discrimination. The two tasks showing significant nicotine effects further showed no baseline-dependent improvement.


Nicotine improves auditory performance in difficult listening situations. The present results support future investigation of nicotine effects in clinical populations with auditory processing deficits or reduced cholinergic activation.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2


  1. Aronoff JM, Landsberger DM (2013) The development of a modified spectral ripple test. J Acoust Soc Am 134:EL217–EL222

  2. Askew C, Intskirveli I, Metherate R (2017) Systemic nicotine increases gain and narrows receptive fields in A1 via integrated cortical and subcortical actions. eNeuro 4(3).

  3. Baschnagel JS, Hawk LW Jr (2008) The effects of nicotine on the attentional modification of the acoustic startle response in nonsmokers. Psychopharmacology 198:93–101

  4. Behler O, Breckel TP, Thiel CM (2015) Nicotine reduces distraction under low perceptual load. Psychopharmacology 232:1269–1277

  5. Benowitz NL, Lessov-Schlaggar CN, Swan GE, Jacob P 3rd (2006) Female sex and oral contraceptive use accelerate nicotine metabolism. Clin Pharmacol Ther 79:480–488

  6. Bramer SL, Kallungal BA (2003) Clinical considerations in study designs that use cotinine as a biomarker. Biomarkers 8:187–203

  7. Disney AA, Aoki C, Hawken MJ (2007) Gain modulation by nicotine in macaque v1. Neuron 56:701–713

  8. Dwyer JB, McQuown SC, Leslie FM (2009) The dynamic effects of nicotine on the developing brain. Pharmacol Ther 122:125–139

  9. Fletcher H (1938) The mechanism of hearing as revealed through experiment of the masking effect of thermal noise. Proc Natl Acad Sci U S A 24:265–274

  10. Harkrider AW, Champlin CA (2001a) Acute effect of nicotine on non-smokers: II. MLRs and 40-Hz responses. Hear Res 160:89–98

  11. Harkrider AW, Champlin CA (2001b) Acute effect of nicotine on non-smokers: III. LLRs and EEGs. Hear Res 160:99–110

  12. Harkrider AW, Champlin CA, McFadden D (2001) Acute effect of nicotine on non-smokers: I. OAEs and ABRs. Hear Res 160:73–88

  13. Harkrider AW, Hedrick MS (2005) Acute effect of nicotine on auditory gating in smokers and non-smokers. Hear Res 202:114–128

  14. Heatherton TF, Kozlowski LT, Frecker RC, Fagerstrom KO (1991) The Fagerstrom test for nicotine dependence: a revision of the Fagerstrom tolerance questionnaire. Br J Addict 86:1119–1127

  15. Heishman SJ, Kleykamp BA, Singleton EG (2010) Meta-analysis of the acute effects of nicotine and smoking on human performance. Psychopharmacology 210:453–469

  16. Hong LE, Schroeder M, Ross TJ, Buchholz B, Salmeron BJ, Wonodi I, Thaker GK, Stein EA (2011) Nicotine enhances but does not normalize visual sustained attention and the associated brain network in schizophrenia. Schizophr Bull 37:416–425

  17. Hukkanen J, Jacob P 3rd, Benowitz NL (2005) Metabolism and disposition kinetics of nicotine. Pharmacol Rev 57:79–115

  18. Intskirveli I, Metherate R (2012) Nicotinic neuromodulation in auditory cortex requires MAPK activation in thalamocortical and intracortical circuits. J Neurophysiol 107:2782–2793

  19. Kassel JD (1997) Smoking and attention: a review and reformulation of the stimulus-filter hypothesis. Clin Psychol Rev 17:451–478

  20. Kawai HD, Kang HA, Metherate R (2011) Heightened nicotinic regulation of auditory cortex during adolescence. J Neurosci 31:14367–14377

  21. Knott V, Choueiry J, Dort H, Smith D, Impey D, de la Salle S, Philippe T (2014a) Baseline-dependent modulating effects of nicotine on voluntary and involuntary attention measured with brain event-related P3 potentials. Pharmacol Biochem Behav 122:107–117

  22. Knott V, de la Salle S, Choueiry J, Impey D, Smith D, Smith M, Beaudry E, Saghir S, Ilivitsky V, Labelle A (2015) Neurocognitive effects of acute choline supplementation in low, medium and high performer healthy volunteers. Pharmacol Biochem Behav 131:119–129

  23. Knott V, Smith D, de la Salle S, Impey D, Choueiry J, Beaudry E, Smith M, Saghir S, Ilivitsky V, Labelle A (2014b) CDP-choline: effects of the procholine supplement on sensory gating and executive function in healthy volunteers stratified for low, medium and high P50 suppression. J Psychopharmacol 28:1095–1108

  24. Knott VJ, Bolton K, Heenan A, Shah D, Fisher DJ, Villeneuve C (2009) Effects of acute nicotine on event-related potential and performance indices of auditory distraction in nonsmokers. Nicotine Tob Res 11:519–530

  25. Lawrence NS, Ross TJ, Stein EA (2002) Cognitive mechanisms of nicotine on visual attention. Neuron 36:539–548

  26. Levin ED, McClernon FJ, Rezvani AH (2006) Nicotinic effects on cognitive function: behavioral characterization, pharmacological specification, and anatomic localization. Psychopharmacology 184:523–539

  27. Metherate R, Intskirveli I, Kawai HD (2012) Nicotinic filtering of sensory processing in auditory cortex. Front Behav Neurosci 6:44

  28. Myers CS, Taylor RC, Moolchan ET, Heishman SJ (2008) Dose-related enhancement of mood and cognition in smokers administered nicotine nasal spray. Neuropsychopharmacology 33:588–598

  29. Newhouse P, Kellar K, Aisen P, White H, Wesnes K, Coderre E, Pfaff A, Wilkins H, Howard D, Levin ED (2012) Nicotine treatment of mild cognitive impairment: a 6-month double-blind pilot clinical trial. Neurology 78:91–101

  30. Newhouse PA, Potter A, Singh A (2004) Effects of nicotinic stimulation on cognitive performance. Curr Opin Pharmacol 4:36–46

  31. Parrott AC, Garnham NJ, Wesnes K, Pincock C (1996) Cigarette smoking and abstinence: comparative effects upon cognitive task performance and mood state over 24 hours. Hum Psychopharm Clin 11:391–400

  32. Phillips DP, Taylor TL, Hall SE, Carr MM, Mossop JE (1997) Detection of silent intervals between noises activating different perceptual channels: some properties of “central” auditory gap detection. J Acoust Soc Am 101:3694–3705

  33. Sarter M, Parikh V, Howe WM (2009) nAChR agonist-induced cognition enhancement: integration of cognitive and neuronal mechanisms. Biochem Pharmacol 78:658–667

  34. Smucny J, Olincy A, Eichman LS, Tregellas JR (2015) Neuronal effects of nicotine during auditory selective attention. Psychopharmacology 232:2017–2028

  35. Smucny J, Olincy A, Rojas DC, Tregellas JR (2016) Neuronal effects of nicotine during auditory selective attention in schizophrenia. Hum Brain Mapp 37:410–421

  36. Thiel CM, Fink GR (2007) Visual and auditory alertness: modality-specific and supramodal neural mechanisms and their modulation by nicotine. J Neurophysiol 97:2758–2768

  37. Zhang YX, Barry JG, Moore DR, Amitay S (2012) A new test of attention in listening (TAIL) predicts auditory performance. PLoS One 7:e53502

Download references


The authors thank Barbara Bodenhoefer, Sahara George, and Zekiye Onsan for subject recruitment assistance, Dr. Thomas Lu for technical assistance, Dr. Jonathan Venezia for statistical assistance, and the reviewers for helpful suggestions.

Funding information

This research was supported by grants from the National Institutes of Health to FGZ (5R01DC015587), to RM (4R01-DC013200) and a pre-doctoral fellowship to CQP (UL1-TR000153).

Author information

Correspondence to Fan-Gang Zeng.

Ethics declarations

Conflict of interest

F.G.Z. owns stock in Axonics, Nurotron, Syntiant, and Velox Biosystems. The other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pham, C.Q., Kapolowicz, M.R., Metherate, R. et al. Nicotine enhances auditory processing in healthy and normal-hearing young adult nonsmokers. Psychopharmacology (2019) doi:10.1007/s00213-019-05421-x

Download citation


  • Acetylcholinergic systems
  • Auditory processing
  • Nicotine
  • Selective attention
  • Spectral ripple discrimination
  • Tone in noise detection
  • Temporal gap detection