Skip to main content

Advertisement

Log in

Atorvastatin ameliorates depressive behaviors and neuroinflammatory in streptozotocin-induced diabetic mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Depression is a chronic and progressive syndrome and commonly associated with several neuropsychiatric comorbidities, of which depression is the most studied. It has been demonstrated that statins also have anti-inflammatory and immunomodulatory properties, which being explored for potential benefits in depression. However, the role of statins in the treatment of diabetes-related depression has not been well examined. Herein, we investigated the effects of atorvastatin on depressive behaviors and neuroinflammation in streptozotocin-induced diabetic mice. Our data indicated that oral administration of atorvastatin at 10 or 20 mg/kg for 3 weeks markedly ameliorated diabetes-associated depressive behaviors reflected by better performance in sucrose preference test (SPT), tail suspension test (TST), and novelty-suppressed feeding test (NSFT). The study further showed that atrovastatin decreased the expression of nucleus NF-κB p65 expression and ameliorated neuroinflammatory responses in prefrontal cortex as evidenced by less Iba-1-positive cells and lower inflammatory mediators including IL-1β and TNF-α. As expected, atorvastatin-treated diabetic mice exhibited significant improvement of hyperlipidemia rather than hyperglycemia. These results suggest that atorvastatin has the potential to be employed as a therapy for diabetes-related depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Boku S, Nakagawa S, Toda H, Hishimoto A (2018) Neural basis of major depressive disorder: Beyond monoamines hypothesis. Psychiatry Clin Neurosci 72:3–12

    CAS  PubMed  Google Scholar 

  • Buchberger B, Huppertz H, Krabbe L, Lux B, Mattivi JT, Siafarikas A (2016) Symptoms of depression and anxiety in youth with type 1 diabetes: a systematic review and meta-analysis. Psychoneuroendocrinology 70:70–84

    PubMed  Google Scholar 

  • Datta G, Colasanti A, Rabiner EA, Gunn RN, Malik O, Ciccarelli O et al (2017) Neuroinflammation and its relationship to changes in brain volume and white matter lesions in multiple sclerosis. Brain. 140:2297–2938

    Google Scholar 

  • Di Legge S, Koch G, Diomedi M, Stanzione P, Sallustio F (2012) Stroke prevention: managing modifiable risk factors. Stroke Res Treat 2012:391538

    PubMed  PubMed Central  Google Scholar 

  • Du GT, Hu M, Mei ZL, Wang C, Liu GJ, Hu M, Long Y, Miao MX, Chang LJ, Hong H (2014) Telmisartan treatment ameliorates memory deficits in streptozotocin-induced diabetic mice via attenuating cerebral amyloidosis. J Pharmacol Sci 124:418–426

    CAS  PubMed  Google Scholar 

  • Durisko Z, Mulsant BH, Andrews PW (2015) An adaptationist perspective on the etiology of depression. J Affect Disord 172:315–323

    PubMed  Google Scholar 

  • ElBatsh MM (2015) Antidepressant-like effect of simvastatin in diabetic rats. Can J Physiol Pharmacol 93:649–656

    CAS  PubMed  Google Scholar 

  • Elsayed M, Banasr M, Duric V, Fournier NM, Licznerski P, Duman RS (2012) Antidepressant effects of fibroblast growth factor-2 in behavioral and cellular models of depression. Biol Psychiatry 72:258–265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fang SC, Xie H, Chen F, Hu M, Long Y, Sun HB et al (2017) Simvastatin ameliorates memory impairment and neurotoxicity in streptozotocin-induced diabetic mice. Neuroscience. 355:200–211

    CAS  PubMed  Google Scholar 

  • Forman K, Vara E, García C, Kireev R, Cuesta S, Acuña-Castroviejo D et al (2016) Influence of aging and growth hormone on different members of the NFκB family and IκB expression in the heart from a murine model of senescence-accelerated aging. Exp Gerontol 73:114–120

    CAS  PubMed  Google Scholar 

  • Ghanizadeh A, Hedayati A (2013) Augmentation of fluoxetine with lovastatin for treating major depressive disorder, a randomized double-blind placebo controlled-clinical trial. Depress Anxiety 30:1084–1088

    CAS  PubMed  Google Scholar 

  • Ghodke RM, Tour N, Devi K (2012) Effects of statins and cholesterol on memory functions in mice. Metab Brain Dis 27:443–451

    CAS  PubMed  Google Scholar 

  • Golden SH, Lazo M, Carnethon M, Bertoni AG, Schreiner PJ, Diez Roux AV et al (2008) Examining a bidirectional association between depressive symptoms and diabetes. JAMA. 299:2751–2759

    PubMed  PubMed Central  Google Scholar 

  • Gonzalez JS, Peyrot M, McCarl LA, Collins EM, Serpa L, Mimiaga MJ et al (2008) Depression and diabetes treatment nonadherence: a meta-analysis. Diabetes Care 31:2398–2403

    PubMed  PubMed Central  Google Scholar 

  • Graeber MB (2010) Changing face of microglia. Science. 330:783–788

    CAS  PubMed  Google Scholar 

  • Gragnoli C (2014) Hypothesis of the neuroendocrine cortisol pathway gene role in the comorbidity of depression, type 2 diabetes, and metabolic syndrome. Appl Clin Genet 7:43–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grey M, Whittemore R, Tamborlane W (2002) Depression in type 1 diabetes in children: natural history and correlates. J Psychosom Res 53:907–911

    PubMed  Google Scholar 

  • Harrison RW, Ashton CH (1994) Do cholesterol-lowering agents affect brain activity? A comparison of simvastatin, pravastatin, and placebo in healthy volunteers. Br J Clin Pharmacol 37:231–236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu P, Thinschmidt JS, Yan Y, Hazra S, Bhatwadekar A, Caballero S et al (2013) CNS inflammation and bone marrow neuropathy in type 1 diabetes. Am J Pathol 183:1608–1620

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaiswal M, Schinske A, Pop-Busui R (2014) Lipids and lipid management in diabetes. Best Pract Res Clin Endocrinol Metab 28:325–338

    CAS  PubMed  Google Scholar 

  • Jeon SW, Kim YK (2017) Inflammation-induced depression: Its pathophysiology and therapeutic implications. J Neuroimmunol 313:92–98

    CAS  PubMed  Google Scholar 

  • Jia M, Li C, Zheng Y, Ding X, Chen M, Ding J, du R, Lu M, Hu G (2017) Leonurine exerts antidepressant-like effects in the chronic mild stress-induced depression model in mice by inhibiting neuroinflammation. Int J Neuropsychopharmacol 20:886–895

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnadas R, Cavanagh J (2012) Depression: an inflammation illness? J Neurol Neurosurg Psychiatry 83:495–502

    PubMed  Google Scholar 

  • Kwon KJ, Lee EJ, Kim MK, Kim SY, Kim JN, Kim JO, Kim HJ, Kim HY, Han JS, Shin CY, Han SH (2015) Diabetes augments cognitive dysfunction in chronic cerebral hypoperfusion by increasing neuronal cell death: implication of cilostazol for diabetes mellitus-induced dementia. Neurobiol Dis 73:12–23

    CAS  PubMed  Google Scholar 

  • Lee YC, Lin CH, Wu RM, Lin MS, Lin JW, Chang CH, Lai MS (2013) Discontinuation of statin therapy associates with Parkinson disease: a population-based study. Neurology. 81:410–416

    CAS  PubMed  Google Scholar 

  • Lei Q, Peng WN, You H, Hu ZP, Lu W (2014) Statins in nervous system-associated diseases: angels or devils? Pharmazie. 69:448–454

    CAS  PubMed  Google Scholar 

  • Liao JK (2002) Beyond lipid lowering: the role of statins in vascular protection. Int J Cardiol 86:5–18

    PubMed  Google Scholar 

  • Lin JR, Fang SC, Tang SS, Hu M, Long Y, Ghosh A, Sun HB, Kong LY, Hong H (2017) Hippocampal CysLT1R knockdown or blockade represses LPS-induced depressive behaviors and neuroinflammatory response in mice. Acta Pharmacol Sin 38:477–487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd CE, Roy T, Nouwen A, Chauhan AM (2012) Epidemiology of depression in diabetes: international and cross-cultural issues. J Affect Disord 142(Suppl):S22–S29

    PubMed  Google Scholar 

  • Ludka FK, Zomkowski AD, Cunha MP, Dal-Cim T, Zeni AL, Rodrigues AL, Tasca CI (2013) Acute atorvastatin treatment exerts antidepressant-like effect in mice via the L-arginine-nitric oxide-cyclic guanosine monophosphate pathway and increases BDNF levels. Eur Neuropsychopharmacol 23:400–412

    CAS  PubMed  Google Scholar 

  • McAlister FA, Lawson FM, Teo KK, Armstrong PW (2001) Randomised trials of secondary prevention programmes in coronary heart disease: systematic review. Br Med J 323:957–962

    CAS  Google Scholar 

  • Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analysis: the PRISMA statement. Br Med J 339:b2535

    Google Scholar 

  • Muldoon MF (1994) Injury, death, and cholesterol. Ann Intern Med 121:719–720

    CAS  PubMed  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglia cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 308:1314–1318

    CAS  PubMed  Google Scholar 

  • O’Neil A, Sanna L, Redlich C, Sanderson K, Jacka F, Williams LJ et al (2012) The impact of statins on psychological wellbeing: a systematic review and meta-analysis. BMC Med 10:154

    PubMed  PubMed Central  Google Scholar 

  • Parsaik AK, Singh B, Murad MH, Singh K, Mascarenhas SS, Williams MD et al (2014) Statins use and risk of depression: a systematic review and meta-analysis. J Affect Disord 160:62–67

    CAS  PubMed  Google Scholar 

  • Pickup JC (2004) Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care 27:813–823

    PubMed  Google Scholar 

  • Redlich C, Berk M, Williams LJ, Sundquist J, Sundquist K, Li X (2014) Stain use and risk of depression: a Swedish national cohort study. BMC Psychiatry 14:348

    PubMed  PubMed Central  Google Scholar 

  • Renshaw PF, Parsegian A, Yang CK, Novero A, Yoon SJ, Lyoo IK et al (2009) Lovastatin potentiates the antidepressant efficacy of fluoxetine in rats. Pharmacol Biochem Behav 92:88–92

    CAS  PubMed  Google Scholar 

  • Reus GZ, Fries GR, Stertz L, Badawy M, Passos IC, Barichello T et al (2015) The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience. 300:141–154

    CAS  PubMed  Google Scholar 

  • Salagre E, Fernandes BS, Dodd S, Brownstein DJ, Berk M (2016) Statins for the treatment of depression: a meta-analysis of randomized, double-blind, placebo-controlled trials. J Affect Disord 200:235–242

    CAS  PubMed  Google Scholar 

  • Shyamsundar M, McKeown ST, O’Kane CM, Craig TR, Brown V, Thickett DR et al (2009) Simvastatin decreases lipopolysaccharide-induced pulmonary inflammation in healthy volunteers. Am J Respir Cirt Care Med 179:1107–1114

    CAS  Google Scholar 

  • Sild M, Ruthazer ES, Booij L (2017) Major depressive disorder and anxiety disorders from the glial perspective: etiological mechanisms, intervention and monitoring. Neurosci Biobehav Rev 83:474–488

    PubMed  Google Scholar 

  • Steiner J, Walter M, Gos T, Guillemin GJ, Bernstein HG, Sarnyai Z et al (2011) Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission? J Neuroinflammation 8:94

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taguchi A (2009) Vascular factors in diabetes and Alzheimer’s disease. J Alzheimers Dis:859–864

    PubMed  Google Scholar 

  • Tennant KG, Lindsley SR, Kirigiti MA, True C, Kievit P (2019) Central and peripheral administration of fibroblast growth factor 1 improves pancreatic islet insulin secretion in diabetic mouse models. Diabetes 68:1462–1472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vargas R, Rincon J, Pedreanez A, Viera N, Hernandez-Fonseca JP, Pena C, Mosquera J (2012) Role of angiotensin II in the brain inflammatory events during experimental diabetes in rats. Brain Res 1453:64–76

    CAS  PubMed  Google Scholar 

  • Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29:3974–3980

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker ER, McGee RE, Druss BG (2015) Mortality in mental disorders and global disease burden implications: a systematic review and meta-analysis. JAMA Psychiatry 72:334–341

    PubMed  PubMed Central  Google Scholar 

  • Wang C, Yang XM, Zhuo YY, Zhou H, Lin HB, Cheng YF et al (2012) The phosphodiesterase-4 inhibitor rolipram reverses Aβ-induced cognitive impairment and neuroinflammatory and apoptotic responses in rats. Int J Neuropsychopharmacol 15:749–766

    CAS  PubMed  Google Scholar 

  • Xin LM, Chen L, Ji ZP, Zhang SY, Wang J, Liu YH et al (2015) Risk factors for anxiety in major depressive disorder patients. Clin Psychopharmacol Neurosci 13:263–268

    PubMed  PubMed Central  Google Scholar 

  • Yu XB, Dong RR, Wang H, Lin JR, An YQ, Du Y et al (2016) Knockdown of hippocampal cysteinyl leukotriene receptor 1 prevents depressive behavior and neuroinflammation induced by chronic mild stress in mice. Psychopharmacology. 233:1739–1749

    CAS  PubMed  Google Scholar 

  • Yu XB, Zhang HN, Dai Y, Zhou ZY, Xu RA, Hu LF (2019) Simvastatin prevents and ameliorates depressive behaviors via neuroinflammatory regulation in mice. J Affect Disord 245:939–949

    CAS  PubMed  Google Scholar 

  • Zanoveli JM, Morais HD, Dias IC, Schreiber AK, Souza CP, Cunha JM (2016) Depression associated with diabetes: from pathophysiology to treatment. Curr Diabetes Rev 12:165–178

    CAS  PubMed  Google Scholar 

  • Zhang X, Tao Y, Wang J, Garcia-Mata R, Markovic-Plese S (2013) Simvastatin inhibits secretion of Th17-polarizing cytokines and antigen presentation by DCs in patients with relapsing remitting multiple sclerosis. Eur J Immunol 43:281–289

    CAS  PubMed  Google Scholar 

  • Zhao G, Yu YM, Kaneki M, Bonab AA, Tompkins RG, Fischman AJ (2015) Simvastatin reduces burn injury-induced splenic apoptosis via downregulation of the TNF-α/NF-κB pathway. Ann Surg 261:1006–1012

    PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the Science Foundation of the Zhejiang Pharmaceutical Association (2018ZYY43 to Zhang. HN, 2017ZYY20 to Yu. XB) and the Science Foundation of Wenzhou (S20100050 to Liang. J)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Jing.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hai-Na, Z., Xu-Ben, Y., Cong-Rong, T. et al. Atorvastatin ameliorates depressive behaviors and neuroinflammatory in streptozotocin-induced diabetic mice. Psychopharmacology 237, 695–705 (2020). https://doi.org/10.1007/s00213-019-05406-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-019-05406-w

Keywords

Navigation