The effect of acute cocoa flavanol intake on the BOLD response and cognitive function in type 1 diabetes: a randomized, placebo-controlled, double-blinded cross-over pilot study

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Rationale

Type 1 diabetes (T1D), a chronic autoimmune disease, can result in cognitive dysfunction and is associated with vascular dysfunction. Cocoa flavanols (CFs) can stimulate nitric oxide-dependent vasodilation, resulting in enhanced hemodynamic responses and better cognitive function.

Objectives

To investigate whether acute CF supplementation can improve cognitive function and hemodynamic responses in T1D.

Methods

In this randomized, double-blinded, cross-over pilot study, 11 patients with T1D and their healthy matched controls consumed CF (900 mg CF) and placebo (15 mg CF) 2 h before a flanker test. fMRI was used to measure blood oxygen level–dependent (BOLD) response during the cognitive test. Repeated measure ANOVAs were used to test the effects of CF and T1D on BOLD response and cognitive performance.

Results

CF improved reaction time on the flanker test and increased the BOLD response in the supramarginal gyrus parietal lobe and inferior frontal gyrus, compared to placebo, in both groups. In patients with T1D, cognitive performance was not deteriorated while the BOLD response was smaller in T1D compared to healthy controls in the subgyral temporal lobe and the cerebellum.

Conclusions

Acute CF intake improved reaction time on the flanker test and increased the BOLD response in the activated brain areas in patients with T1D and their matched controls.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Brands A, Biessels GJ, de Haan E et al (2005) The effects of type 1 diabetes on cognitive performance. Diabetes Care 28:726–735

    Article  Google Scholar 

  2. Cade WT (2008) Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Phys Ther 88:1322–1335. https://doi.org/10.2522/ptj.20080008

    Article  PubMed  PubMed Central  Google Scholar 

  3. Decroix L, Tonoli C, Soares DD, Tagougui S, Heyman E, Meeusen R (2016) Acute cocoa flavanol improves cerebral oxygenation without enhancing executive function at rest or after exercise. Appl Physiol Nutr Metab 41:1225–1232. https://doi.org/10.1139/apnm-2016-0245

    CAS  Article  PubMed  Google Scholar 

  4. Fisher NDL, Sorond FA, Hollenberg NK (2006) Cocoa flavanols and brain perfusion. J Cardiovasc Pharmacol 47(Suppl 2):S210–S214. https://doi.org/10.1097/00005344-200606001-00017

    CAS  Article  PubMed  Google Scholar 

  5. Forstmann BU, van den Wildenberg WPM, Ridderinkhof KR (2008) Neural mechanisms, temporal dynamics, and individual differences in interference control. J Cogn Neurosci 20:1854–1865. https://doi.org/10.1162/jocn.2008.20122

    Article  PubMed  Google Scholar 

  6. Francis ST, Head K, Morris PG, Macdonald IA (2006) The effect of flavanol-rich cocoa on the fMRI response to a cognitive task in healthy young people. J Cardiovasc Pharmacol 47(Suppl 2):S215–S220. https://doi.org/10.1097/00005344-200606001-00018

    CAS  Article  PubMed  Google Scholar 

  7. Gallardo-Moreno GB, González-Garrido AA, Gudayol-Ferré E, Guàrdia-Olmos J (2015) Type 1 diabetes modifies brain activation in young patients while performing visuospatial working memory tasks. J Diabetes Res 2015:1–9. https://doi.org/10.1155/2015/703512

    CAS  Article  Google Scholar 

  8. Guàrdia-Olmos J, Gallardo-Moreno GB, Gudayol-Ferré E, Peró-Cebollero M, González-Garrido AA (2017) Effect of verbal task complexity in a working memory paradigm in patients with type 1 diabetes. A fMRI study. PLoS One 12:1–18. https://doi.org/10.1371/journal.pone.0178172

    CAS  Article  Google Scholar 

  9. Lamport DJ, Pal D, Moutsiana C, Field DT, Williams CM, Spencer JPE, Butler LT (2015) The effect of flavanol-rich cocoa on cerebral perfusion in healthy older adults during conscious resting state: a placebo controlled, crossover, acute trial. Psychopharmacology 232:3227–3234. https://doi.org/10.1007/s00213-015-3972-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Lasta M, Pemp B, Schmidl D, Boltz A, Kaya S, Palkovits S, Werkmeister R, Howorka K, Popa-Cherecheanu A, Garhöfer G, Schmetterer L (2013) Neurovascular dysfunction precedes neural dysfunction in the retina of patients with type 1 diabetes. Investig Ophthalmol Vis Sci 54:842–847. https://doi.org/10.1167/iovs.12-10873

    CAS  Article  Google Scholar 

  11. Lieberman HR (2003) Nutrition, brain function and cognitive performance. Appetite 40:245–254. https://doi.org/10.1016/S0195-6663(03)00010-2

    Article  PubMed  Google Scholar 

  12. Manach C, Scalbert A, Morand C, et al (2004) Polyphenols: food sources and bioavailability 1,2

    CAS  Article  Google Scholar 

  13. Mastroiacovo D, Kwik-uribe C, Grassi D et al (2015) Cocoa flavanol consumption improves cognitive function, blood pressure control, and metabolic profile in elderly subjects: the cocoa, cognition, and aging (CoCoA) study - a randomized controlled trial. Am J Clin Nutr 101:538–548. https://doi.org/10.3945/ajcn.114.092189.1

    CAS  Article  PubMed  Google Scholar 

  14. Meeusen R (2014) Exercise, nutrition and the brain. Sports Med 44:47–56. https://doi.org/10.1007/s40279-014-0150-5

    Article  PubMed Central  Google Scholar 

  15. Nee DE, Wager TD, Jonides J (2007) Interference resolution: insights from a meta-analysis of neuroimaging tasks. Cogn Affect Behav Neurosci 7:1–17. https://doi.org/10.3758/CABN.7.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nehlig A (2013) The neuroprotective effects of cocoa flavanol and its influence on cognitive performance. Br J Clin Pharmacol 75:716–727. https://doi.org/10.1111/j.1365-2125.2012.04378.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Novak V (2013) NIH Public Access. 6:380–396. doi: https://doi.org/10.1007/s12170-012-0260-2.Cognition

  18. Schramm DD, Karim M, Schrader HR, Holt RR, Kirkpatrick NJ, Polagruto JA, Ensunsa JL, Schmitz HH, Keen CL (2003) Food effects on the absorption and pharmacokinetics of cocoa flavanols. Life Sci 73:857–869. https://doi.org/10.1016/S0024-3205(03)00373-4

    CAS  Article  PubMed  Google Scholar 

  19. Socci V, Tempesta D, Desideri G, de Gennaro L, Ferrara M (2017) Enhancing human cognition with cocoa flavonoids. Front Nutr 4:19. https://doi.org/10.3389/fnut.2017.00019

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Sorond FA, Lipsitz LA, Hollenberg NK, Fisher NDL (2008) Cerebral blood flow response to flavanol-rich cocoa in healthy elderly humans. Neuropsychiatr Dis Treat 4:433–440. https://doi.org/10.2147/NDT.S2310

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Sorond FA, Hurwitz S, Salat DH et al (2013) Neurovascular coupling, cerebral white matter integrity, and response to cocoa in older people. Neurology 81:904–909

    CAS  Article  Google Scholar 

  22. Steinbrink J, Villringer A, Kempf F, Haux D, Boden S, Obrig H (2006) Illuminating the BOLD signal: combined fMRI-fNIRS studies. Magn Reson Imaging 24:495–505. https://doi.org/10.1016/j.mri.2005.12.034

    Article  PubMed  Google Scholar 

  23. Tonoli C, Heyman E, Roelands B, Pattyn N, Buyse L, Piacentini MF, Berthoin S, Meeusen R (2014) Type 1 diabetes-associated cognitive decline: a meta-analysis and update of the current literature J Diabetes 6:499–513. https://doi.org/10.1111/1753-0407.12193

    Article  PubMed  Google Scholar 

  24. Trans Cranial T (2012) Cortical functions. Trans Crainial Technol 1:66. https://doi.org/10.4324/9780203135549

    Article  Google Scholar 

  25. Vlachopoulos C, Aznaouridis K, Alexopoulos N et al (2005) Effect of dark chocolate on arterial function in healthy IndividualsEffect of dark chocolate on arterial function in healthy individuals. Am J Hypertens 18:785–791. https://doi.org/10.1016/j.amjhyper.2004.12.008

    CAS  Article  PubMed  Google Scholar 

  26. von der Gablentz J, Tempelmann C, Münte TF, Heldmann M (2015) Performance monitoring and behavioral adaptation during task switching: an fMRI study. Neuroscience 285:227–235. https://doi.org/10.1016/j.neuroscience.2014.11.024

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

We kindly thank Berry Callebout® to manufacture, produce, and provide us with the supplements.

Funding

LD had a grant “Lotto Sport Science Chair.” CT was a post-doctorate granted from the Hauts de France-FAPEMIG regions for a project on T1D, CF, and the brain.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Romain Meeusen.

Ethics declarations

The study protocol was approved by the Ethical Committee of the Brussels University hospital (B.U.N. 143201524680) and was carried out in accordance with the Declaration of Helsinki.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Decroix, L., van Schuerbeek, P., Tonoli, C. et al. The effect of acute cocoa flavanol intake on the BOLD response and cognitive function in type 1 diabetes: a randomized, placebo-controlled, double-blinded cross-over pilot study. Psychopharmacology 236, 3421–3428 (2019). https://doi.org/10.1007/s00213-019-05306-z

Download citation

Keywords

  • Cocoa flavanols
  • Cognitive function
  • MRI neuroimaging
  • Neurovascular coupling
  • Type 1 diabetes