Advertisement

Psychopharmacology

, Volume 236, Issue 8, pp 2405–2412 | Cite as

Modeling subjective belief states in computational psychiatry: interoceptive inference as a candidate framework

  • Xiaosi GuEmail author
  • Thomas H. B. FitzGerald
  • Karl J. Friston
Theoretical and Methodological Perspective

Abstract

The nascent field computational psychiatry has undergone exponential growth since its inception. To date, much of the published work has focused on choice behaviors, which are primarily modeled within a reinforcement learning framework. While this initial normative effort represents a milestone in psychiatry research, the reality is that many psychiatric disorders are defined by disturbances in subjective states (e.g., depression, anxiety) and associated beliefs (e.g., dysmorphophobia, paranoid ideation), which are not considered in normative models. In this paper, we present interoceptive inference as a candidate framework for modeling subjective—and associated belief—states in computational psychiatry. We first introduce the notion and significance of modeling subjective states in computational psychiatry. Next, we present the interoceptive inference framework, and in particular focus on the relationship between interoceptive inference (i.e., belief updating) and emotions. Lastly, we will use drug craving as an example of subjective states to demonstrate the feasibility of using interoceptive inference to model the psychopathology of subjective states.

Keywords

Subjective beliefs states Computational psychiatry Interoceptive inference Emotion Craving 

Notes

Acknowledgments

XG is supported by the National Institute on Drug Abuse (grant 1R01DA043695) and the Mental Illness Research, Education, and Clinical Center (MIRECC VISN 2) at the James J. Peter Veterans Affairs Medical Center, Bronx, NY. THBF is supported by a European Research Council (ERC) Starting Grant under the Horizon 2020 program (Grant Agreement 804701). KF is a Wellcome Principal Research Fellow (Ref: 088130/Z/09/Z).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Adams RA, Shipp S, Friston KJ (2013a) Predictions not commands: active inference in the motor system. Brain Struct Funct 218:611–643CrossRefPubMedGoogle Scholar
  2. Adams RA, Stephan KE, Brown HR, Frith CD, Friston KJ (2013b) The computational anatomy of psychosis. Front Psychiatry 4:47CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aitchison L, Lengyel M (2016) The Hamiltonian brain: efficient probabilistic inference with excitatory-inhibitory neural circuit dynamics. PLoS Comput Biol 12:e1005186CrossRefPubMedPubMedCentralGoogle Scholar
  4. Allen M, Friston KJ (2018) From cognitivism to autopoiesis: towards a computational framework for the embodied mind. Synthese 195:2459–2482CrossRefPubMedGoogle Scholar
  5. Allen M, Frank D, Schwarzkopf DS, Fardo F, Winston JS, Hauser TU, Rees G (2016) Unexpected arousal modulates the influence of sensory noise on confidence. Elife 5Google Scholar
  6. APA (2013) Diagnostic and Statistical Manual of Mental Disorders (DSM-5®). American Psychiatric PubGoogle Scholar
  7. Bach DR, Dayan P (2017) Algorithms for survival: a comparative perspective on emotions. Nat Rev Neurosci 18:311–319CrossRefPubMedGoogle Scholar
  8. Bard P (1928) A diencephalic mechanism for the expression of rage with special reference to the sympathetic nervous system. Am J Physiol—Legacy Content 84:490–515CrossRefGoogle Scholar
  9. Barrett LF, Simmons WK (2015) Interoceptive predictions in the brain. Nat Rev Neurosci 16:419–429CrossRefPubMedPubMedCentralGoogle Scholar
  10. Barrett LF, Quigley KS, Bliss-Moreau E, Aronson KR (2004) Interoceptive sensitivity and self-reports of emotional experience. J Pers Soc Psychol 87:684–697CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bedi G, Preston KL, Epstein DH, Heishman SJ, Marrone GF, Shaham Y, de Wit H (2011) Incubation of cue-induced cigarette craving during abstinence in human smokers. Biol Psychiatry 69:708–711CrossRefPubMedPubMedCentralGoogle Scholar
  12. Berridge KC (2012) From prediction error to incentive salience: mesolimbic computation of reward motivation. Eur J Neurosci 35:1124–1143CrossRefPubMedPubMedCentralGoogle Scholar
  13. Braver TS, Barch DM, Cohen JD (1999) Cognition and control in schizophrenia: a computational model of dopamine and prefrontal function. Biol Psychiatry 46:312–328CrossRefPubMedGoogle Scholar
  14. Browning M, Behrens TE, Jocham G, O’Reilly JX, Bishop SJ (2015) Anxious individuals have difficulty learning the causal statistics of aversive environments. Nat Neurosci 18:590–596CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cannon WB (1927) The James-Lange theory of emotions: a critical examination and an alternative theory. Am J Psychol 39:106–124CrossRefGoogle Scholar
  16. Chase HW, Eickhoff SB, Laird AR, Hogarth L (2011) The neural basis of drug stimulus processing and craving: an activation likelihood estimation meta-analysis. Biol Psychiatry 70:785–793CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chiu PH, Deldin PJ (2007) Neural evidence for enhanced error detection in major depressive disorder. Am J Psychiatry 164:608–616CrossRefPubMedGoogle Scholar
  18. Chung D, Kadlec K, Aimone JA, McCurry K, King-Casas B, Chiu PH (2017) Valuation in major depression is intact and stable in a non-learning environment. Sci Rep 7:44374CrossRefPubMedPubMedCentralGoogle Scholar
  19. Conrad KL, Tseng KY, Uejima JL, Reimers JM, Heng LJ, Shaham Y, Marinelli M, Wolf ME (2008) Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature 454:118–121CrossRefPubMedPubMedCentralGoogle Scholar
  20. Doya K (2007) Bayesian brain: probabilistic approaches to neural coding. MIT PressGoogle Scholar
  21. Dutton DG, Aron AP (1974) Some evidence for heightened sexual attraction under conditions of high anxiety. J Pers Soc Psychol 30:510–517CrossRefPubMedGoogle Scholar
  22. Engelmann JM, Versace F, Robinson JD, Minnix JA, Lam CY, Cui Y, Brown VL, Cinciripini PM (2012) Neural substrates of smoking cue reactivity: a meta-analysis of fMRI studies. Neuroimage 60:252–262CrossRefPubMedGoogle Scholar
  23. Fiore VG, Ognibene D, Adinoff B, Gu X (2018) A multilevel computational characterization of endophenotypes in addiction. eNeuro 5:ENEURO.0151–ENEU18.2018CrossRefGoogle Scholar
  24. Fleming SM, Daw ND (2017) Self-evaluation of decision-making: a general Bayesian framework for metacognitive computation. Psychol Rev 124:91–114CrossRefPubMedPubMedCentralGoogle Scholar
  25. Friston K (2005a) A theory of cortical responses. Philos Trans R Soc Lond Ser B Biol Sci 360:815–836CrossRefGoogle Scholar
  26. Friston KJ (2005b) Hallucinations and perceptual inference. Behav Brain Sci 28:764–766CrossRefGoogle Scholar
  27. Friston K (2010) The free-energy principle: a unified brain theory? Nat Rev Neurosci 11:127–138CrossRefPubMedGoogle Scholar
  28. Friston KJ, Stephan KE, Montague R, Dolan RJ (2014) Computational psychiatry: the brain as a phantastic organ. Lancet Psychiatry 1:148–158CrossRefPubMedGoogle Scholar
  29. Friston K, FitzGerald T, Rigoli F, Schwartenbeck P, Pezzulo G (2017) Active inference: a process theory. Neural Comput 29:1–49CrossRefPubMedGoogle Scholar
  30. Fusar-Poli P, Placentino A, Carletti F, Landi P, Allen P, Surguladze S, Benedetti F, Abbamonte M, Gasparotti R, Barale F, Perez J, McGuire P, Politi P (2009) Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. J Psychiatry Neurosci 34:418–432PubMedPubMedCentralGoogle Scholar
  31. Gentsch A, Sel A, Marshall AC, Schutz-Bosbach S (2019) Affective interoceptive inference: evidence from heart-beat evoked brain potentials. Hum Brain Mapp 40:20–33CrossRefPubMedGoogle Scholar
  32. Gillan CM, Kosinski M, Whelan R, Phelps EA, Daw ND (2016) Characterizing a psychiatric symptom dimension related to deficits in goal-directed control. Elife 5Google Scholar
  33. Grimm JW, Hope BT, Wise RA, Shaham Y (2001) Neuroadaptation. Incubation of cocaine craving after withdrawal. Nature 412:141–142CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gu X (2018) Incubation of craving: a Bayesian account. Neuropsychopharmacology 43:2337–2339CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gu X, Filbey F (2017) A Bayesian observer model of drug craving. JAMA Psychiatry 74:419–420CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gu X, FitzGerald TH (2014) Interoceptive inference: homeostasis and decision-making. Trends Cogn Sci 18:269–270CrossRefPubMedGoogle Scholar
  37. Gu X, Hof PR, Friston KJ, Fan J (2013) Anterior insular cortex and emotional awareness. J Comp Neurol 521:3371–3388CrossRefPubMedPubMedCentralGoogle Scholar
  38. Gu X, Lohrenz T, Salas R, Baldwin PR, Soltani A, Kirk U, Cinciripini PM, Montague PR (2015) Belief about nicotine selectively modulates value and reward prediction error signals in smokers. Proc Natl Acad Sci U S A 112:2539–2544CrossRefPubMedPubMedCentralGoogle Scholar
  39. Gu X, Lohrenz T, Salas R, Baldwin PR, Soltani A, Kirk U, Cinciripini PM, Montague PR (2016) Belief about nicotine modulates subjective craving and insula activity in deprived smokers. Front Psychiatry 7:126PubMedPubMedCentralGoogle Scholar
  40. Hauser TU, Iannaccone R, Ball J, Mathys C, Brandeis D, Walitza S, Brem S (2014) Role of the medial prefrontal cortex in impaired decision making in juvenile attention-deficit/hyperactivity disorder. JAMA Psychiatry 71:1165–1173CrossRefPubMedGoogle Scholar
  41. Hauser TU, Fiore VG, Moutoussis M, Dolan RJ (2016) Computational psychiatry of ADHD: neural gain impairments across Marrian levels of analysis. Trends Neurosci 39:63–73CrossRefPubMedPubMedCentralGoogle Scholar
  42. Hauser TU, Iannaccone R, Dolan RJ, Ball J, Hattenschwiler J, Drechsler R, Rufer M, Brandeis D, Walitza S, Brem S (2017a) Increased fronto-striatal reward prediction errors moderate decision making in obsessive-compulsive disorder. Psychol Med 47:1246–1258CrossRefPubMedGoogle Scholar
  43. Hauser TU, Moutoussis M, Iannaccone R, Brem S, Walitza S, Drechsler R, Dayan P, Dolan RJ (2017b) Increased decision thresholds enhance information gathering performance in juvenile obsessive-compulsive disorder (OCD). PLoS Comput Biol 13:e1005440CrossRefPubMedPubMedCentralGoogle Scholar
  44. Huys QJ, Daw ND, Dayan P (2015) Depression: a decision-theoretic analysis. Annu Rev Neurosci 38:1–23CrossRefPubMedGoogle Scholar
  45. James W (1884) What is an emotion? Mind os-IX: 188–205Google Scholar
  46. Jasinska AJ, Stein EA, Kaiser J, Naumer MJ, Yalachkov Y (2014) Factors modulating neural reactivity to drug cues in addiction: a survey of human neuroimaging studies. Neurosci Biobehav Rev 38:1–16CrossRefPubMedGoogle Scholar
  47. Jepma M, Koban L, van Doorn J, Jones M, Wager TD (2018) Behavioural and neural evidence for self-reinforcing expectancy effects on pain. Nat Hum Behav 2:838–855CrossRefGoogle Scholar
  48. Juliano LM, Fucito LM, Harrell PT (2011) The influence of nicotine dose and nicotine dose expectancy on the cognitive and subjective effects of cigarette smoking. Exp Clin Psychopharmacol 19:105–115CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kelemen WL, Kaighobadi F (2007) Expectancy and pharmacology influence the subjective effects of nicotine in a balanced-placebo design. Exp Clin Psychopharmacol 15:93–101CrossRefPubMedPubMedCentralGoogle Scholar
  50. Keller H (1881) Letter from Heller Keller to Rev. Phillips Brooks.Google Scholar
  51. Knill DC, Pouget A (2004) The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci 27:712–719CrossRefPubMedGoogle Scholar
  52. Lange CG, James W (1922) The emotions. Williams & WilkinsGoogle Scholar
  53. Lawson RP, Rees G, Friston KJ (2014) An aberrant precision account of autism. Front Hum Neurosci 8:302CrossRefPubMedPubMedCentralGoogle Scholar
  54. Lawson RP, Mathys C, Rees G (2017) Adults with autism overestimate the volatility of the sensory environment. Nat Neurosci 20:1293–1299CrossRefPubMedPubMedCentralGoogle Scholar
  55. Lazarus RS (1991) Progress on a cognitive-motivational-relational theory of emotion. Am Psychol 46:819–834CrossRefPubMedGoogle Scholar
  56. LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184CrossRefPubMedGoogle Scholar
  57. Lemogne C, le Bastard G, Mayberg H, Volle E, Bergouignan L, Lehericy S, Allilaire JF, Fossati P (2009) In search of the depressive self: extended medial prefrontal network during self-referential processing in major depression. Soc Cogn Affect Neurosci 4:305–312CrossRefPubMedPubMedCentralGoogle Scholar
  58. Lu L, Hope BT, Dempsey J, Liu SY, Bossert JM, Shaham Y (2005) Central amygdala ERK signaling pathway is critical to incubation of cocaine craving. Nat Neurosci 8:212–219CrossRefPubMedGoogle Scholar
  59. Ma WJ, Beck JM, Latham PE, Pouget A (2006) Bayesian inference with probabilistic population codes. Nat Neurosci 9:1432–1438CrossRefPubMedGoogle Scholar
  60. Maia TV, Frank MJ (2011) From reinforcement learning models to psychiatric and neurological disorders. Nat Neurosci 14:154–162CrossRefPubMedPubMedCentralGoogle Scholar
  61. Mason L, Eldar E, Rutledge RB (2017) Mood instability and reward dysregulation—a neurocomputational model of bipolar disorder. JAMA Psychiatry 74:1275–1276CrossRefPubMedGoogle Scholar
  62. McBride D, Barrett SP, Kelly JT, Aw A, Dagher A (2006) Effects of expectancy and abstinence on the neural response to smoking cues in cigarette smokers: an fMRI study. Neuropsychopharmacology 31:2728–2738CrossRefPubMedGoogle Scholar
  63. McCusker CG, Brown K (1990) Alcohol-predictive cues enhance tolerance to and precipitate “craving” for alcohol in social drinkers. J Stud Alcohol 51:494–499CrossRefPubMedGoogle Scholar
  64. Montague PR, Dolan RJ, Friston KJ, Dayan P (2012) Computational psychiatry. Trends Cogn Sci 16:72–80CrossRefPubMedGoogle Scholar
  65. Moutoussis M, Bentall RP, El-Deredy W, Dayan P (2011) Bayesian modelling of jumping-to-conclusions bias in delusional patients. Cogn Neuropsychiatry 16:422–447CrossRefPubMedGoogle Scholar
  66. Moutoussis M, Fearon P, El-Deredy W, Dolan R, Friston K (2014) Bayesian inferences about the self (and others): a review. Conscious Cogn 25:67–76CrossRefPubMedPubMedCentralGoogle Scholar
  67. Murphy FC, Nimmo-Smith I, Lawrence AD (2003) Functional neuroanatomy of emotions: a meta-analysis. Cogn Affect Behav Neurosci 3:207–233CrossRefPubMedGoogle Scholar
  68. Nestler EJ, Carlezon WA, Jr. (2006) The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 59: 1151–1159Google Scholar
  69. Ondobaka S, Kilner J, Friston K (2017) The role of interoceptive inference in theory of mind. Brain Cogn 112:64–68CrossRefPubMedPubMedCentralGoogle Scholar
  70. Owens AP, Allen M, Ondobaka S, Friston KJ (2018) Interoceptive inference: from computational neuroscience to clinic. Neurosci Biobehav Rev 90:174–183CrossRefPubMedGoogle Scholar
  71. Papez JW (1937) A proposed mechanism of emotion. Arch Neurol Psychiatr 38:725–743CrossRefGoogle Scholar
  72. Parvaz MA, Moeller SJ, Goldstein RZ (2016) Incubation of cue-induced craving in adults addicted to cocaine measured by electroencephalography. JAMA Psychiatry 73:1127–1134CrossRefPubMedPubMedCentralGoogle Scholar
  73. Pellicano E, Burr D (2012) When the world becomes ‘too real’: a Bayesian explanation of autistic perception. Trends Cogn Sci 16:504–510CrossRefPubMedGoogle Scholar
  74. Pessoa L, Adolphs R (2010) Emotion processing and the amygdala: from a ‘low road’ to ‘many roads’ of evaluating biological significance. Nat Rev Neurosci 11:773–783CrossRefPubMedPubMedCentralGoogle Scholar
  75. Petzschner FH, Weber LAE, Gard T, Stephan KE (2017) Computational psychosomatics and computational psychiatry: toward a joint framework for differential diagnosis. Biol Psychiatry 82:421–430CrossRefPubMedGoogle Scholar
  76. Pezzulo G (2014) Why do you fear the bogeyman? An embodied predictive coding model of perceptual inference. Cogn Affect Behav Neurosci 14:902–911CrossRefPubMedGoogle Scholar
  77. Pezzulo G, Rigoli F, Friston K (2015) Active inference, homeostatic regulation and adaptive behavioural control. Prog Neurobiol 134:17–35CrossRefPubMedPubMedCentralGoogle Scholar
  78. Phan KL, Wager T, Taylor SF, Liberzon I (2002) Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 16:331–348CrossRefPubMedGoogle Scholar
  79. Phelps EA (2006) Emotion and cognition: insights from studies of the human amygdala. Annu Rev Psychol 57:27–53CrossRefPubMedGoogle Scholar
  80. Picard RW, Vyzas E, Healey J (2001) Toward machine emotional intelligence: analysis of affective physiological state. IEEE Trans Pattern Anal Mach Intell 23:1175–1191CrossRefGoogle Scholar
  81. Pizzagalli DA, Peccoralo LA, Davidson RJ, Cohen JD (2006) Resting anterior cingulate activity and abnormal responses to errors in subjects with elevated depressive symptoms: a 128-channel EEG study. Hum Brain Mapp 27:185–201CrossRefPubMedGoogle Scholar
  82. Powers AR, Mathys C, Corlett PR (2017) Pavlovian conditioning-induced hallucinations result from overweighting of perceptual priors. Science 357:596–600CrossRefPubMedPubMedCentralGoogle Scholar
  83. Rangel A, Camerer C, Montague PR (2008) A framework for studying the neurobiology of value-based decision making. Nat Rev Neurosci 9:545–556CrossRefPubMedPubMedCentralGoogle Scholar
  84. Redish AD, Johnson A (2007) A computational model of craving and obsession. Ann N Y Acad Sci 1104:324–339CrossRefPubMedGoogle Scholar
  85. Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 18:247–291CrossRefPubMedGoogle Scholar
  86. Robinson OJ, Cools R, Carlisi CO, Sahakian BJ, Drevets WC (2012) Ventral striatum response during reward and punishment reversal learning in unmedicated major depressive disorder. Am J Psychiatry 169:152–159CrossRefPubMedPubMedCentralGoogle Scholar
  87. Rushworth MF, Behrens TE (2008) Choice, uncertainty and value in prefrontal and cingulate cortex. Nat Neurosci 11:389–397CrossRefPubMedGoogle Scholar
  88. Rutledge RB, Moutoussis M, Smittenaar P, Zeidman P, Taylor T, Hrynkiewicz L, Lam J, Skandali N, Siegel JZ, Ousdal OT, Prabhu G, Dayan P, Fonagy P, Dolan RJ (2017) Association of neural and emotional impacts of reward prediction errors with major depression. JAMA Psychiatry 74:790–797CrossRefPubMedPubMedCentralGoogle Scholar
  89. Schachter S (1964) The interaction of cognitive and physiological determinants of emotional state. Adv Exp Soc Psychol 1:49–80CrossRefGoogle Scholar
  90. Schachter S, Singer JE (1962) Cognitive, social, and physiological determinants of emotional state. Psychol Rev 69:379–399CrossRefPubMedGoogle Scholar
  91. Schwartenbeck P, FitzGerald TH, Mathys C, Dolan R, Wurst F, Kronbichler M, Friston K (2015) Optimal inference with suboptimal models: addiction and active Bayesian inference. Med Hypotheses 84:109–117CrossRefPubMedPubMedCentralGoogle Scholar
  92. Seth AK (2013) Interoceptive inference, emotion, and the embodied self. Trends Cogn Sci 17:565–573CrossRefPubMedGoogle Scholar
  93. Seth AK (2014) The cybernetic Bayesian brain: from interoceptive inference to sensorimotor contingencies. In: Metzinger TKaW, Jennifer M (ed) Open MIND. MIND Group, Frankfurt am Main,, pp 1–24Google Scholar
  94. Seth AK, Friston KJ (2016) Active interoceptive inference and the emotional brain. Philos Trans R Soc B 371:20160007CrossRefGoogle Scholar
  95. Shiffman S, Li X, Dunbar MS, Tindle HA, Scholl SM, Ferguson SG (2015) Does laboratory cue reactivity correlate with real-world craving and smoking responses to cues? Drug Alcohol Depend 155:163–169CrossRefPubMedPubMedCentralGoogle Scholar
  96. Slochower J (1976) Emotional labeling and overeating in obese and normal weight individuals. Psychosom Med 38:131–139CrossRefPubMedGoogle Scholar
  97. Sterzer P, Adams RA, Fletcher P, Frith C, Lawrie SM, Muckli L, Petrovic P, Uhlhaas P, Voss M, Corlett PR (2018) The predictive coding account of psychosis. Biol Psychiatry 84:634–643CrossRefPubMedPubMedCentralGoogle Scholar
  98. Tang DW, Fellows LK, Small DM, Dagher A (2012) Food and drug cues activate similar brain regions: a meta-analysis of functional MRI studies. Physiol Behav 106:317–324CrossRefPubMedGoogle Scholar
  99. Tian Y, Du J, Spagna A, Mackie MA, Gu X, Dong Y, Fan J, Wang K (2016) Venlafaxine treatment reduces the deficit of executive control of attention in patients with major depressive disorder. Sci Rep 6:28028CrossRefPubMedPubMedCentralGoogle Scholar
  100. Tiffany ST, Wray JM (2012) The clinical significance of drug craving. Ann N Y Acad Sci 1248:1–17CrossRefPubMedGoogle Scholar
  101. Tiffany ST, Friedman L, Greenfield SF, Hasin DS, Jackson R (2012) Beyond drug use: a systematic consideration of other outcomes in evaluations of treatments for substance use disorders. Addiction 107:709–718CrossRefPubMedGoogle Scholar
  102. Tsakiris M, Critchley H (2016) Interoception beyond homeostasis: affect, cognition and mental health. Philos Trans R Soc B: Biol Sci 371:20160002CrossRefGoogle Scholar
  103. Valins S (1966) Cognitive effects of false heart-rate feedback. J Pers Soc Psychol 4:400–408CrossRefPubMedGoogle Scholar
  104. Whitton AE, Treadway MT, Pizzagalli DA (2015) Reward processing dysfunction in major depression, bipolar disorder and schizophrenia. Curr Opin Psychiatry 28:7–12CrossRefPubMedPubMedCentralGoogle Scholar
  105. Wiech K (2016) Deconstructing the sensation of pain: the influence of cognitive processes on pain perception. Science 354:584–587CrossRefPubMedGoogle Scholar
  106. Xiang T, Lohrenz T, Montague PR (2013) Computational substrates of norms and their violations during social exchange. J Neurosci 33:1099–108aCrossRefPubMedPubMedCentralGoogle Scholar
  107. Yalachkov Y, Kaiser J, Naumer MJ (2012) Functional neuroimaging studies in addiction: multisensory drug stimuli and neural cue reactivity. Neurosci Biobehav Rev 36:825–835CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkUSA
  2. 2.Nash Family Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkUSA
  3. 3.Mental Illness Research, Education, and Clinical Center (MIRECC VISN 2) at the James J. Peter Veterans Affairs Medical CenterBronxUSA
  4. 4.School of PsychologyUniversity of East AngliaNorfolkUK
  5. 5.Wellcome Centre for Human NeuroimagingUniversity College LondonLondonEngland
  6. 6.Max Planck-UCL Centre for Computational Psychiatry and Ageing ResearchRussell Square HouseLondonUK

Personalised recommendations