Skip to main content

Advertisement

Log in

2-Aminoindan and its ring-substituted derivatives interact with plasma membrane monoamine transporters and α2-adrenergic receptors

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Over the last decade, many new psychostimulant analogues have appeared on the recreational drug market and most are derivatives of amphetamine or cathinone. Another class of designer drugs is derived from the 2-aminoindan structural template. Several members of this class, including the parent compound 2-aminoindan (2-AI), have been sold as designer drugs. Another aminoindan derivative, 5-methoxy-2-aminoindan (5-MeO-AI or MEAI), is the active ingredient in a product marketed online as an alcohol substitute.

Methods

Here, we tested 2-AI and its ring-substituted derivatives 5-MeO-AI, 5-methoxy-6-methyl-2-aminoindan (MMAI), and 5,6-methylenedioxy-2-aminoindan (MDAI) for their abilities to interact with plasma membrane monoamine transporters for dopamine (DAT), norepinephrine (NET) and serotonin (SERT). We also compared the binding affinities of the aminoindans at 29 receptor and transporter binding sites.

Results

2-AI was a selective substrate for NET and DAT. Ring substitution increased potency at SERT while reducing potency at DAT and NET. MDAI was moderately selective for SERT and NET, with tenfold weaker effects on DAT. 5-MeO-AI exhibited some selectivity for SERT, having sixfold lower potency at NET and 20-fold lower potency at DAT. MMAI was highly selective for SERT, with 100-fold lower potency at NET and DAT. The aminoindans had relatively high affinity for α2-adrenoceptor subtypes. 2-AI had particularly high affinity for α2C receptors (Ki = 41 nM) and slightly lower affinity for the α2A (Ki = 134 nM) and α2B (Ki = 211 nM) subtypes. 5-MeO-AI and MMAI also had moderate affinity for the 5-HT2B receptor.

Conclusions

2-AI is predicted to have (+)-amphetamine-like effects and abuse potential whereas the ring-substituted derivatives may produce 3,4-methylenedioxymethamphetamine (MDMA)-like effects but with less abuse liability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anonymous (2017) 2-Aminoindan reports. Available online: https://erowid.org/experiences/subs/exp_2Aminoindan.shtml [Accessed: April 3, 2018]

  • Auclair AL, Cathala A, Sarrazin F, Depoortere R, Piazza PV, Newman-Tancredi A, Spampinato U (2010) The central serotonin 2B receptor: a new pharmacological target to modulate the mesoaccumbens dopaminergic pathway activity. J Neurochem 114:1323–1332

    CAS  PubMed  Google Scholar 

  • Battaglia G, Brooks BP, Kulsakdinun C, De Souza EB (1988) Pharmacologic profile of MDMA (3,4-methylenedioxymethamphetamine) at various brain recognition sites. Eur J Pharmacol 149:159–163

    Article  CAS  PubMed  Google Scholar 

  • Bauer CT, Banks ML, Blough BE, Negus SS (2013) Use of intracranial self-stimulation to evaluate abuse-related and abuse-limiting effects of monoamine releasers in rats. Br J Pharmacol 168:850–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumann MH, Volkow ND (2016) Abuse of new psychoactive substances: threats and solutions. Neuropsychopharmacology 41:663–665

    Article  CAS  PubMed  Google Scholar 

  • Baumann MH, Clark RD, Budzynski AG, Partilla JS, Blough BE, Rothman RB (2005) N-substituted piperazines abused by humans mimic the molecular mechanism of 3,4-methylenedioxymethamphetamine (MDMA, or ‘Ecstasy’). Neuropsychopharmacology 30:550–560

    Article  CAS  PubMed  Google Scholar 

  • Baumann MH, Clark RD, Woolverton WL, Wee S, Blough BE, Rothman RB (2011) In vivo effects of amphetamine analogs reveal evidence for serotonergic inhibition of mesolimbic dopamine transmission in the rat. J Pharmacol Exp Ther 337:218–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumann MH, Ayestas MA Jr, Partilla JS, Sink JR, Shulgin AT, Daley PF, Brandt SD, Rothman RB, Ruoho AE, Cozzi NV (2012) The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacology 37:1192–1203

    Article  CAS  PubMed  Google Scholar 

  • Baumann MH, Partilla JS, Lehner KR, Thorndike EB, Hoffman AF, Holy M, Rothman RB, Goldberg SR, Lupica CR, Sitte HH, Brandt SD, Tella SR, Cozzi NV, Schindler CW (2013) Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive 'bath salts' products. Neuropsychopharmacology 38:552–562

    Article  CAS  PubMed  Google Scholar 

  • Belmer A, Quentin E, Diaz SL, Guiard BP, Fernandez SP, Doly S, Banas SM, Pitychoutis PM, Moutkine I, Muzerelle A, Tchenio A, Roumier A, Mameli M, Maroteaux L (2018) Positive regulation of raphe serotonin neurons by serotonin 2B receptors. Neuropsychopharmacology 43:1623–1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benedikt H (1893) VII. Das β-hydrindon und einige seiner Derivate. Justus Liebigs Ann Chem 275:351–356

  • Besnard J, Ruda GF, Setola V, Abecassis K, Rodriguiz RM, Huang XP, Norval S, Sassano MF, Shin AI, Webster LA, Simeons FR, Stojanovski L, Prat A, Seidah NG, Constam DB, Bickerton GR, Read KD, Wetsel WC, Gilbert IH, Roth BL, Hopkins AL (2012) Automated design of ligands to polypharmacological profiles. Nature 492:215–220

    Article  CAS  PubMed  Google Scholar 

  • Bhat S, Hasenhuetl PS, Kasture A, El-Kasaby A, Baumann MH, Blough BE, Sucic S, Sandtner W, Freissmuth M (2017) Conformational state interactions provide clues to the pharmacochaperone potential of serotonin transporter partial substrates. J Biol Chem 292:16773–16786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilsky EJ, Hui YZ, Hubbell CL, Reid LD (1990) Methylenedioxymethamphetamine's capacity to establish place preferences and modify intake of an alcoholic beverage. Pharmacol Biochem Behav 37:633–638

    Article  CAS  PubMed  Google Scholar 

  • Brandt SD, Braithwaite RA, Evans-Brown M, Kicman AT (2013) Aminoindane analogues. In: Dargan PI, Wood DM (eds) Novel psychoactive substances: classification, pharmacology and toxicology. Academic Press, Tokyo, pp 261–283

    Chapter  Google Scholar 

  • Brunt TM, Atkinson AM, Nefau T, Martinez M, Lahaie E, Malzcewski A, Pazitny M, Belackova V, Brandt SD (2017) Online test purchased new psychoactive substances in 5 different European countries: a snapshot study of chemical composition and price. Int J Drug Policy 44:105–114

    Article  PubMed  Google Scholar 

  • Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  CAS  PubMed  Google Scholar 

  • Corkery JM, Elliott S, Schifano F, Corazza O, Ghodse AH (2013) MDAI (5,6-methylenedioxy-2-aminoindane; 6,7-dihydro-5H-cyclopenta[f][1,3]benzodioxol-6-amine; ‘sparkle’; ‘mindy’) toxicity: a brief overview and update. Hum Psychopharmacol 28:345–355

    Article  CAS  PubMed  Google Scholar 

  • Cozzi NV, Brandt SD, Daley PF, Partilla JS, Rothman RB, Tulzer A, Sitte HH, Baumann MH (2013) Pharmacological examination of trifluoromethyl ring-substituted methcathinone analogs. Eur J Pharmacol 699:180–187

    Article  CAS  PubMed  Google Scholar 

  • Doly S, Valjent E, Setola V, Callebert J, Herve D, Launay JM, Maroteaux L (2008) Serotonin 5-HT2B receptors are required for 3,4-methylenedioxymethamphetamine-induced hyperlocomotion and 5-HT release in vivo and in vitro. J Neurosci 28:2933–2940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doly S, Bertran-Gonzalez J, Callebert J, Bruneau A, Banas SM, Belmer A, Boutourlinsky K, Herve D, Launay JM, Maroteaux L (2009) Role of serotonin via 5-HT2B receptors in the reinforcing effects of MDMA in mice. PLoS One 4:e7952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Droogmans S, Cosyns B, D'Haenen H, Creeten E, Weytjens C, Franken PR, Scott B, Schoors D, Kemdem A, Close L, Vandenbossche JL, Bechet S, Van Camp G (2007) Possible association between 3,4-methylenedioxymethamphetamine abuse and valvular heart disease. Am J Cardiol 100:1442–1445

    Article  CAS  PubMed  Google Scholar 

  • Elliott S, Evans J (2014) A 3-year review of new psychoactive substances in casework. Forensic Sci Int 243:55–60

    Article  CAS  PubMed  Google Scholar 

  • EMCDDA (2007) EMCDDA-Europol 2006 annual report on the implementation of council decision 2005/387/JHA. Publications Office of the European Union, Lisbon

    Google Scholar 

  • EMCDDA (2011) EMCDDA-Europol 2010 annual report on the implementation of council decision 2005/387/JHA. Publications Office of the European Union, Lisbon

    Google Scholar 

  • Erreger K, Grewer C, Javitch JA, Galli A (2008) Currents in response to rapid concentration jumps of amphetamine uncover novel aspects of human dopamine transporter function. J Neurosci 28:976–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eshleman AJ, Wolfrum KM, Reed JF, Kim SO, Swanson T, Johnson RA, Janowsky A (2017) Structure-activity relationships of substituted cathinones, with transporter binding, uptake, and release. J Pharmacol Exp Ther 360:33–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farre M, Abanades S, Roset PN, Peiro AM, Torrens M, O’Mathuna B, Segura M, de la Torre R (2007) Pharmacological interaction between 3,4-methylenedioxymethamphetamine (ecstasy) and paroxetine: pharmacological effects and pharmacokinetics. J Pharmacol Exp Ther 323:954–962

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald LW, Burn TC, Brown BS, Patterson JP, Corjay MH, Valentine PA, Sun JH, Link JR, Abbaszade I, Hollis JM, Largent BL, Hartig PR, Hollis GF, Meunier PC, Robichaud AJ, Robertson DW (2000) Possible role of valvular serotonin 5-HT(2B) receptors in the cardiopathy associated with fenfluramine. Mol Pharmacol 57:75–81

    CAS  PubMed  Google Scholar 

  • Foltin RW, Fischman MW (1991) Assessment of abuse liability of stimulant drugs in humans: a methodological survey. Drug Alcohol Depend 28:3–48

    Article  CAS  PubMed  Google Scholar 

  • Fon EA, Pothos EN, Sun BC, Killeen N, Sulzer D, Edwards RH (1997) Vesicular transport regulates monoamine storage and release but is not essential for amphetamine action. Neuron 19:1271–1283

    Article  CAS  PubMed  Google Scholar 

  • Freyberg Z, Sonders MS, Aguilar JI, Hiranita T, Karam CS, Flores J, Pizzo AB, Zhang Y, Farino ZJ, Chen A, Martin CA, Kopajtic TA, Fei H, Hu G, Lin YY, Mosharov EV, McCabe BD, Freyberg R, Wimalasena K, Hsin LW, Sames D, Krantz DE, Katz JL, Sulzer D, Javitch JA (2016) Mechanisms of amphetamine action illuminated through optical monitoring of dopamine synaptic vesicles in Drosophila brain. Nat Commun 7:10652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaine SP, Rubin LJ, Kmetzo JJ, Palevsky HI, Traill TA (2000) Recreational use of aminorex and pulmonary hypertension. Chest 118:1496–1497

    Article  CAS  PubMed  Google Scholar 

  • Gatch MB, Rutledge MA, Carbonaro T, Forster MJ (2009) Comparison of the discriminative stimulus effects of dimethyltryptamine with different classes of psychoactive compounds in rats. Psychopharmacology 204:715–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatch MB, Dolan SB, Forster MJ (2016) Locomotor, discriminative stimulus, and place conditioning effects of MDAI in rodents. Behav Pharmacol 27:497–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glennon RA (1989) Stimulus properties of hallucinogenic phenalkylamines and related designer drugs: formulation of structure-activity relationships. NIDA Res Monogr 94:43–67

    CAS  PubMed  Google Scholar 

  • Glennon RA, Young R, Hauck AE, McKenney JD (1984) Structure-activity studies on amphetamine analogs using drug discrimination methodology. Pharmacol Biochem Behav 21:895–901

    Article  CAS  PubMed  Google Scholar 

  • Golan E (2016) Alcoholic beverage substitute. International patent application No. WO. 2016/092547

  • Gray EG, Whittaker VP (1962) The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J Anat 96:79–88

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griffith JD, Nutt JG, Jasinski DR (1975) A comparison of fenfluramine and amphetamine in man. Clin Pharmacol Ther 18:563–570

    Article  CAS  PubMed  Google Scholar 

  • Halberstadt AL (2017) Pharmacology and toxicology of N-benzylphenethylamine (“NBOMe”) hallucinogens. Curr Top Behav Neurosci 32:283–311

    Article  CAS  PubMed  Google Scholar 

  • Huang XP, Setola V, Yadav PN, Allen JA, Rogan SC, Hanson BJ, Revankar C, Robers M, Doucette C, Roth BL (2009) Parallel functional activity profiling reveals valvulopathogens are potent 5-hydroxytryptamine(2B) receptor agonists: implications for drug safety assessment. Mol Pharmacol 76:710–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huestis MA, Brandt SD, Rana S, Auwarter V, Baumann MH (2017) Impact of novel psychoactive substances on clinical and forensic toxicology and global public health. Clin Chem 63:1564–1569

    Article  CAS  PubMed  Google Scholar 

  • Hutsell BA, Baumann MH, Partilla JS, Banks ML, Vekariya R, Glennon RA, Negus SS (2016) Abuse-related neurochemical and behavioral effects of cathinone and 4-methylcathinone stereoisomers in rats. Eur Neuropsychopharmacol 26:288–297

    Article  CAS  PubMed  Google Scholar 

  • Hysek CM, Simmler LD, Ineichen M, Grouzmann E, Hoener MC, Brenneisen R, Huwyler J, Liechti ME (2011) The norepinephrine transporter inhibitor reboxetine reduces stimulant effects of MDMA (“ecstasy”) in humans. Clin Pharmacol Ther 90:246–255

    Article  CAS  PubMed  Google Scholar 

  • Iversen L, Gibbons S, Treble R, Setola V, Huang XP, Roth BL (2013) Neurochemical profiles of some novel psychoactive substances. Eur J Pharmacol 700:147–151

    Article  CAS  PubMed  Google Scholar 

  • Jan RK, Lin JC, Lee H, Sheridan JL, Kydd RR, Kirk IJ, Russell BR (2010) Determining the subjective effects of TFMPP in human males. Psychopharmacology 211:347–353

    Article  CAS  PubMed  Google Scholar 

  • Johansen SS, Hansen TM (2012) Isomers of fluoroamphetamines detected in forensic cases in Denmark. Int J Legal Med 126:541–547

    Article  PubMed  Google Scholar 

  • Johnson MP, Conarty PF, Nichols DE (1991a) [3H]monoamine releasing and uptake inhibition properties of 3,4-methylenedioxymethamphetamine and p-chloroamphetamine analogues. Eur J Pharmacol 200:9–16

    Article  CAS  PubMed  Google Scholar 

  • Johnson MP, Frescas SP, Oberlender R, Nichols DE (1991b) Synthesis and pharmacological examination of 1-(3-methoxy-4-methylphenyl)-2-aminopropane and 5-methoxy-6-methyl-2-aminoindan: similarities to 3,4-(methylenedioxy)methamphetamine (MDMA). J Med Chem 34:1662–1668

    Article  CAS  PubMed  Google Scholar 

  • Launay JM, Herve P, Peoc'h K, Tournois C, Callebert J, Nebigil CG, Etienne N, Drouet L, Humbert M, Simonneau G, Maroteaux L (2002) Function of the serotonin 5-hydroxytryptamine 2B receptor in pulmonary hypertension. Nat Med 8:1129–1135

    Article  CAS  PubMed  Google Scholar 

  • Liechti ME, Baumann C, Gamma A, Vollenweider FX (2000) Acute psychological effects of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) are attenuated by the serotonin uptake inhibitor citalopram. Neuropsychopharmacology 22:513–521

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Walther D, Yu XY, Drgon T, Uhl GR (2004) The human serotonin receptor 2B: coding region polymorphisms and association with vulnerability to illegal drug abuse. Pharmacogenetics 14:805–811

    Article  CAS  PubMed  Google Scholar 

  • Linsen F, Koning RP, van Laar M, Niesink RJ, Koeter MW, Brunt TM (2015) 4-Fluoroamphetamine in the Netherlands: more than a one-night stand. Addiction 110:1138–1143

    Article  PubMed  Google Scholar 

  • Luethi D, Kolaczynska KE, Docci L, Krahenbuhl S, Hoener MC, Liechti ME (2018) Pharmacological profile of mephedrone analogs and related new psychoactive substances. Neuropharmacology 134:4–12

  • Malmusi L, Dukat M, Young R, Teitler M, Darmani NA, Ahmad B, Smith C, Glennon RA (1996) 1,2,3,4-Tetrahydroisoquinoline and related analogs of the phenylalkylamine designer drug MDMA. Med Chem Res 6:412–426

    CAS  Google Scholar 

  • Marona-Lewicka D, Nichols DE (1994) Behavioral effects of the highly selective serotonin releasing agent 5-methoxy-6-methyl-2-aminoindan. Eur J Pharmacol 258:1–13

    Article  CAS  PubMed  Google Scholar 

  • Marona-Lewicka D, Nichols DE (1998) Drug discrimination studies of the interoceptive cues produced by selective serotonin uptake inhibitors and selective serotonin releasing agents. Psychopharmacology 138:67–75

    Article  CAS  PubMed  Google Scholar 

  • Marona-Lewicka D, Rhee GS, Sprague JE, Nichols DE (1996) Reinforcing effects of certain serotonin-releasing amphetamine derivatives. Pharmacol Biochem Behav 53:99–105

    Article  CAS  PubMed  Google Scholar 

  • Nagai F, Nonaka R, Satoh Hisashi Kamimura K (2007) The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain. Eur J Pharmacol 559:132–137

    Article  CAS  PubMed  Google Scholar 

  • Nichols DE, Brewster WK, Johnson MP, Oberlender R, Riggs RM (1990) Nonneurotoxic tetralin and indan analogues of 3,4-(methylenedioxy)amphetamine (MDA). J Med Chem 33:703–710

    Article  CAS  PubMed  Google Scholar 

  • Oberlender R, Nichols DE (1990) (+)-N-methyl-1-(1,3-benzodioxol-5-yl)-2-butanamine as a discriminative stimulus in studies of 3,4-methylenedioxy-methamphetamine-like behavioral activity. J Pharmacol Exp Ther 255:1098–1106

    CAS  PubMed  Google Scholar 

  • Oberlender R, Nichols DE (1991) Structural variation and (+)-amphetamine-like discriminative stimulus properties. Pharmacol Biochem Behav 38:581–586

    Article  CAS  PubMed  Google Scholar 

  • Partilla JS, Dempsey AG, Nagpal AS, Blough BE, Baumann MH, Rothman RB (2006) Interaction of amphetamines and related compounds at the vesicular monoamine transporter. J Pharmacol Exp Ther 319:237–246

    Article  CAS  PubMed  Google Scholar 

  • Pierce RC, Kumaresan V (2006) The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci Biobehav Rev 30:215–238

    Article  CAS  PubMed  Google Scholar 

  • Richter H, Schenck M (1956) Verfahren zur Herstellung von analgetisch wirksamen 2-Aminoindanverbindungen. German Patent No. DE952441

  • Roth BL (2007) Drugs and valvular heart disease. N Engl J Med 356:6–9

    Article  CAS  PubMed  Google Scholar 

  • Roth BL (2013) National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP) Assay Protocol Book, Version II. Available online: https://pdspdb.unc.edu/pdspWeb/content/PDSP%20Protocols%20II%202013-03-28.pdf [Accessed: 06 May 2017]

  • Rothman RB, Baumann MH (2006a) Balance between dopamine and serotonin release modulates behavioral effects of amphetamine-type drugs. Ann N Y Acad Sci 1074:245–260

    Article  CAS  PubMed  Google Scholar 

  • Rothman RB, Baumann MH (2006b) Therapeutic potential of monoamine transporter substrates. Curr Top Med Chem 6:1845–1859

    Article  CAS  PubMed  Google Scholar 

  • Rothman RB, Ayestas MA, Dersch CM, Baumann MH (1999) Aminorex, fenfluramine, and chlorphentermine are serotonin transporter substrates. Implications for primary pulmonary hypertension. Circulation 100:869–875

    Article  CAS  PubMed  Google Scholar 

  • Rothman RB, Baumann MH, Savage JE, Rauser L, McBride A, Hufeisen SJ, Roth BL (2000) Evidence for possible involvement of 5-HT(2B) receptors in the cardiac valvulopathy associated with fenfluramine and other serotonergic medications. Circulation 102:2836–2841

    Article  CAS  PubMed  Google Scholar 

  • Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, Partilla JS (2001) Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 39:32–41

    Article  CAS  PubMed  Google Scholar 

  • Rothman RB, Clark RD, Partilla JS, Baumann MH (2003) (+)-Fenfluramine and its major metabolite, (+)-norfenfluramine, are potent substrates for norepinephrine transporters. J Pharmacol Exp Ther 305:1191–1199

    Article  CAS  PubMed  Google Scholar 

  • Rudnick G, Clark J (1993) From synapse to vesicle: the reuptake and storage of biogenic amine neurotransmitters. Biochim Biophys Acta 1144:249–263

    Article  CAS  PubMed  Google Scholar 

  • Sandtner W, Stockner T, Hasenhuetl PS, Partilla JS, Seddik A, Zhang YW, Cao J, Holy M, Steinkellner T, Rudnick G, Baumann MH, Ecker GF, Newman AH, Sitte HH (2016) Binding mode selection determines the action of ecstasy homologs at monoamine transporters. Mol Pharmacol 89:165–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schechter MD (1986) Discriminative profile of MDMA. Pharmacol Biochem Behav 24:1533–1537

    Article  CAS  PubMed  Google Scholar 

  • Schindler CW, Thorndike EB, Goldberg SR, Lehner KR, Cozzi NV, Brandt SD, Baumann MH (2016) Reinforcing and neurochemical effects of the "bath salts" constituents 3,4-methylenedioxypyrovalerone (MDPV) and 3,4-methylenedioxy-N-methylcathinone (methylone) in male rats. Psychopharmacology 233:1981–1990

    Article  CAS  PubMed  Google Scholar 

  • Setola V, Hufeisen SJ, Grande-Allen KJ, Vesely I, Glennon RA, Blough B, Rothman RB, Roth BL (2003) 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) induces fenfluramine-like proliferative actions on human cardiac valvular interstitial cells in vitro. Mol Pharmacol 63:1223–1229

    Article  CAS  PubMed  Google Scholar 

  • Shimshoni JA, Winkler I, Edery N, Golan E, van Wettum R, Nutt D (2017) Toxicological evaluation of 5-methoxy-2-aminoindane (MEAI): binge mitigating agent in development. Toxicol Appl Pharmacol 319:59–68

    Article  CAS  PubMed  Google Scholar 

  • Shimshoni JA, Sobol E, Golan E, Ben Ari Y, Gal O (2018) Pharmacokinetic and pharmacodynamic evaluation of 5-methoxy-2-aminoindane (MEAI): a new binge-mitigating agent. Toxicol Appl Pharmacol 343:29–39

    Article  CAS  PubMed  Google Scholar 

  • Simmler LD, Buser TA, Donzelli M, Schramm Y, Dieu LH, Huwyler J, Chaboz S, Hoener MC, Liechti ME (2013) Pharmacological characterization of designer cathinones in vitro. Br J Pharmacol 168:458–470

    Article  CAS  PubMed  Google Scholar 

  • Simmler LD, Rickli A, Hoener MC, Liechti ME (2014a) Monoamine transporter and receptor interaction profiles of a new series of designer cathinones. Neuropharmacology 79:152–160

    Article  CAS  PubMed  Google Scholar 

  • Simmler LD, Rickli A, Schramm Y, Hoener MC, Liechti ME (2014b) Pharmacological profiles of aminoindanes, piperazines, and pipradrol derivatives. Biochem Pharmacol 88:237–244

    Article  CAS  PubMed  Google Scholar 

  • Sitte HH, Freissmuth M (2015) Amphetamines, new psychoactive drugs and the monoamine transporter cycle. Trends Pharmacol Sci 36:41–50

    Article  CAS  PubMed  Google Scholar 

  • Slezak M (2015) A not-so-bitter pill. New Scientist 225:8–9

    Article  Google Scholar 

  • Sofuoglu M, Poling J, Hill K, Kosten T (2009) Atomoxetine attenuates dextroamphetamine effects in humans. Am J Drug Alcohol Abuse 35:412–416

    Article  PubMed  PubMed Central  Google Scholar 

  • Solis E Jr, Partilla JS, Sakloth F, Ruchala I, Schwienteck KL, De Felice LJ, Eltit JM, Glennon RA, Negus SS, Baumann MH (2017) N-alkylated analogs of 4-Methylamphetamine (4-MA) differentially affect monoamine transporters and abuse liability. Neuropsychopharmacology 42:1950–1961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sulzer D, Chen TK, Lau YY, Kristensen H, Rayport S, Ewing A (1995) Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J Neurosci 15:4102–4108

    Article  CAS  PubMed  Google Scholar 

  • Sulzer D, Sonders MS, Poulsen NW, Galli A (2005) Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol 75:406–433

    Article  CAS  PubMed  Google Scholar 

  • Tancer M, Johanson CE (2007) The effects of fluoxetine on the subjective and physiological effects of 3,4-methylenedioxymethamphetamine (MDMA) in humans. Psychopharmacology 189:565–573

    Article  CAS  PubMed  Google Scholar 

  • Tikkanen R, Tiihonen J, Rautiainen MR, Paunio T, Bevilacqua L, Panarsky R, Goldman D, Virkkunen M (2015) Impulsive alcohol-related risk-behavior and emotional dysregulation among individuals with a serotonin 2B receptor stop codon. Transl Psychiatry 5:e681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wee S, Anderson KG, Baumann MH, Rothman RB, Blough BE, Woolverton WL (2005) Relationship between the serotonergic activity and reinforcing effects of a series of amphetamine analogs. J Pharmacol Exp Ther 313:848–854

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm BG, Mandad S, Truckenbrodt S, Krohnert K, Schafer C, Rammner B, Koo SJ, Classen GA, Krauss M, Haucke V, Urlaub H, Rizzoli SO (2014) Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science 344:1023–1028

    Article  CAS  PubMed  Google Scholar 

  • Wise RA (1996) Neurobiology of addiction. Curr Opin Neurobiol 6:243–251

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Receptor binding data were generously provided by the National Institute of Mental Health’s Psychoactive Drug Screening Program (NIMH PDSP), Contract # HHSN-271-2008-00025-C. The NIMH PDSP is directed by Dr. Bryan Roth at the University of North Carolina at Chapel Hill and Project Officer Jamie Driscol at NIMH, Bethesda, MD, USA. Principles of laboratory animal care were followed for these experiments, as well as national laws.

Funding

This work was supported by the National Institute on Drug Abuse (NIDA) Intramural Research Program DA 00523, NIDA Grant R01 DA041336, and by the Veteran’s Administration VISN 22 Mental Illness Research, Education, and Clinical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam L. Halberstadt.

Ethics declarations

Animal use procedures were conducted in accordance with the NIH Guide for the Care and Use of Laboratory Animals, and the Animal Care and Use Committee of the Intramural Research Program of the National Institute on Drug Abuse (Baltimore, MD, USA).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to a Special Issue on SI on Bath salts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halberstadt, A.L., Brandt, S.D., Walther, D. et al. 2-Aminoindan and its ring-substituted derivatives interact with plasma membrane monoamine transporters and α2-adrenergic receptors. Psychopharmacology 236, 989–999 (2019). https://doi.org/10.1007/s00213-019-05207-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-019-05207-1

Keywords

Navigation